PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mesoscopic analysis of creep characteristics of hard tuff considering damage

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article employs a nonlinear creep constitutive model and explores the microscopic deformation features of hard tuff during the creep process, incorporating damage effects. Utilizing the particle flow program (PFC2D), a creep contact model is developed to simulate hard tuff under triaxial compression conditions. The study analyzes the creep mechanism of hard tuff under varying confining pressures, focusing on microscopic evolutions. Triaxial compression tests, conducted with confining pressures ranging from 10 to 30 MPa and axial pressures from 50 to 80% of peak strength, reveal significant influences of the confining pressure on the strength, deformation, and failure mode of hard rock. The results reveal that higher confining pressures enhance peak strength and peak strain, while the elastic modulus reduces continuously with increasing deviatoric stress, accompanied by pronounced attenuation creep features and cumulative deformation. The numerical results indicate that the mixed model accurately represents creep behavior in hard rocks. The meso-crack propagation pattern reveals that tensile fracture is the predominant mode of particle failure under triaxial compression. At low axial pressure, micro-crack propagation in attenuation creep and steady-state creep is limited, although internal damage accumulates continuously. As axial pressure increases, the rate of fracture formation rises, making creep failure more apparent. The numerical results align with the experimental data, with the mixing ratio of the mixed model effectively representing the creep characteristics of various rock types. The developed approach has significant implications for ensuring the enduring stability and structural integrity of rock masses in challenging sedimentary rock formations.
Rocznik
Strony
art. no. e72, 2024
Opis fizyczny
Bibliogr. 58 poz., fot., rys., tab., wykr.
Twórcy
  • School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
autor
  • School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
  • School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
autor
  • School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
  • School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
  • School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
autor
  • School of Resource & Civil Engineering, Northeastern University, Shenyang 110819, China
Bibliografia
  • 1. Fan S, Song Z, Xu T, et al. Investigation of the microstructure damage and mechanical properties evolution of limestone subjected to high-pressure water. Constr Build Mater. 2022;316: 125871.
  • 2. Cheng Y, Song Z, Song W, et al. Strain performance and fracture response characteristics of hard rock under cyclic disturbance loading. Geomechanics and Engineering. 2021;26(6):551-63.
  • 3. Nadimi S, Shahriar K, Sharifzadeh M, et al. Triaxial creep tests and back analysis of time-dependent behavior of Siah Bisheh cavern by 3-Dimensional Distinct Element Method. Tunn Undergr Space Technol. 2011;26(1):155-62.
  • 4. Xue Y, Gao F, Liu X, et al. Permeability and pressure distribution characteristics of the roadway surrounding rock in the damaged zone of an excavation. Int J Min Sci Technol. 2017;27(2):211-9.
  • 5. Sharifzadeh M, Tarifard A, Moridi MA. Time-dependent behavior of tunnel lining in weak rock mass based on displacement back analysis method. Tunn Undergr Space Technol. 2013;38:348-56.
  • 6. Dong K, Yang D, Chen J, et al. Monitoring-data mechanism-driven dynamic evaluation method for slope safety. Comput Geotech. 2022;148: 104850.
  • 7. Bonini M, Barla G. The Saint Martin La Porte access adit (Lyon-Turin Base Tunnel) revisited. Tunn Undergr Space Technol. 2012;30:38-54.
  • 8. Bosman, JD*, Malan, DF** & Drescher K. Time-dependent tunnel deformation at Hartebeesfontein Mine. Journal of the Southern African Institute of Mining and Metallurgy, 2000, 100(6): 333-340.
  • 9. Wu H, Fan F, Yang X, et al. Large deformation characteristics and treatment effect for deep bias tunnel in broken phyllite: A case study. Eng Fail Anal. 2022;135: 106045.
  • 10. Xuyang C, Xufeng W, Dongsheng Z, et al. Creep and control of the deep soft rock roadway (DSRR): Insights from laboratory testing and practice in Pingdingshan mining area. Rock Mechanics and Rock Engineering, 2022: 1-16.
  • 11. Wang J, Zhang Q, Song Z, et al. Creep properties and damage constitutive model of salt rock under uniaxial compression. Int J Damage Mech. 2020;29(6):902-22.
  • 12. Song Z, Wang T, Wang J, et al. Uniaxial compression mechanical properties and damage constitutive model of limestone under osmotic pressure. Int J Damage Mech. 2022;31(4):557-81.
  • 13. Shan R, Bai Y, Ju Y, et al. Study on the triaxial unloading creep mechanical properties and damage constitutive model of red sandstone containing a single ice-filled flaw. Rock Mech Rock Eng. 2021;54:833-55.
  • 14. Ma S, Gutierrez M. A time-dependent creep model for rock based on damage mechanics. Environmental Earth Sciences. 2020;79(19):466.
  • 15. Chen Y, Chen Q, Pan Y, et al. A Chemical Damage Creep Model of Rock Considering the Influence of Triaxial Stress. Materials. 2022;15(21):7590.
  • 16. Han Y, Ma H, Yang C, et al. A modified creep model for cyclic characterization of rock salt considering the effects of the mean stress, half-amplitude and cycle period. Rock Mech Rock Eng. 2020;53:3223-36.
  • 17. Zhu W, Yan B, Liu X, et al. Rock creep deformation triggered by dynamic disturbance: Numerical simulation. Int J Geomech. 2022;22(7):04022101.
  • 18. YANG Chao, WANG Jiao, DONG Xinchen, et al. Uniaxial creep test and three-dimensional numerical simulation of double flawed sandstone with different rock bridge angles [J/OL]. Chinese Journal of Rock Mechanics and Engineering: 1-12[2023-05-25].
  • 19. Wang B, Li T, Zhu Q, et al. Study on the creep properties and crack propagation behavior of single-fissure sandstone based on the damage bond model. Theoret Appl Fract Mech. 2023;124: 103805.
  • 20. Gutiérrez-Ch JG, Senent S, Estebanez E, et al. Discrete element modelling of rock creep behaviour using rate process theory. Can Geotech J. 2021;58(8):1231-46.
  • 21. Li W, Han Y, Wang T, et al. DEM micromechanical modeling and laboratory experiment on creep behavior of salt rock. Journal of Natural Gas Science and Engineering. 2017;46:38-46.
  • 22. Wang, J.B, Wang, T., Song, Z.P., Zhang, Y.W., Zhang, Q. (2022). Improved maxwell model describing the whole creep process of salt rock and its programming. International journal of applied mechanics(13-10).
  • 23. Wang Q Y, Zhu W C, Xu T, et al. Numerical simulation of rock creep behavior with a damage-based constitutive law. International Journal of Geomechanics, 2017, 17(1): 04016044.
  • 24. Tang H, Wang D, Huang R, et al. A new rock creep model based on variable-order fractional derivatives and continuum damage mechanics. Bull Eng Geol Env. 2018;77:375-83.
  • 25. Wang M, Cai M. A simplified model for time-dependent deformation of rock joints. Rock Mech Rock Eng. 2021;54:1779-97.
  • 26. Wang Q, Ren X, Li J. Modeling of unstable creep failure of spatial variable rocks subjected to sustained loading. Comput Geotech. 2022;148: 104847.
  • 27. Wang Z, Shen M, Gu L, et al. Creep behavior and long-term strength characteristics of greenschist under different confining pressures. Geotech Test J. 2018;41(1):55-71.
  • 28. Hou R, Cui Q, Wu H, et al. Creep behavior and long-term strength characteristics of pre-peak damaged sandstone under conventional triaxial compression. Sci Rep. 2023;13(1):3850.
  • 29. Ding Y, Zhang Q, Zhang L, et al. Three axis creep test and analysis of granite in underground laboratory of deep geological disposal. Journal of Central South University (Science and Technology). 2019;50(04):957-67.
  • 30. Ma Qinyong Yu, Peiyang YP. Experimental Study on Uniaxial Compressive Creep of Deep Siltstone under Step Loading. Chinese Journal of Underground Space and Engineering. 2019;15(02):339-44.
  • 31. Wu F, Chen J, Zou Q. A nonlinear creep damage model for salt rock. Int J Damage Mech. 2019;28(5):758-71.
  • 32. Zhao K, Ma H, Yang C, et al. Damage evolution and deformation of rock salt under creep-fatigue loading. Rock Mech Rock Eng. 2021;54:1985-97.
  • 33. Maghous S, de Aguiar CB, Rossi R. Micromechanical approach to effective viscoelastic behavior of jointed rocks. Int J Rock Mech Min Sci. 2021;139: 104581.
  • 34. Wang J, Wang T, Song Z, et al. Improved Maxwell Model Describing the Whole Creep Process of Salt Rock and its Programming. Int J Appl Mech. 2021;13(10):2150113.
  • 35. Wei Y, Chen Q, Huang H, et al. Study on creep models and parameter inversion of columnar jointed basalt rock masses. Eng Geol. 2021;290: 106206.
  • 36. Huang J, Chen SH, Liu ML, et al. Physical model test and numerical simulation study of cumulative damage to deep tunnel surrounding rock under cyclic blasting load. Int J Damage Mech. 2023;32(2):161-84.
  • 37. Hu B, Wei EJ, Li J, et al. Nonlinear creep model based on shear creep test of granite. Geomechanics and Engineering. 2021;27(5):527.
  • 38. Cao W, Chen K, Tan X, et al. A novel damage-based creep model considering the complete creep process and multiple stress levels. Comput Geotech. 2020;124: 103599.
  • 39. Yan B, Guo Q, Ren F, et al. Modified Nishihara model and experimental verification of deep rock mass under the water-rock interaction. Int J Rock Mech Min Sci. 2020;128: 104250.
  • 40. Huang P, Zhang J, Spearing AJSS, et al. Experimental study of the creep properties of coal considering initial damage. Int J Rock Mech Min Sci. 2021;139: 104629.
  • 41. Gao YH, Zhou Z, Zhang H, et al. Viscoelastoplastic displacement solution for deep buried circular tunnel based on a fractional derivative creep model. Advances in Civil Engineering. 2021;2021:1-7.
  • 42. Zhou L, Sarfarazi V, Haeri H, et al. Study on shear fracture behavior of soft filling in concrete specimens: Experimental tests and numerical simulation. Struct Eng Mech. 2023;85(3):337-51.
  • 43. ZHANG Xuepeng, JIANG Yujing, WANG Gang, et al. Creep simulation test of rock based on particle discrete element method. Journal of Central South University (Science and Technology), 2015, 46(10): 3914-3921.
  • 44. Potyondy DO. Simulating stress corrosion with a bonded-particle model for rock. Int J Rock Mech Min Sci. 2007;44(5):677-91.
  • 45. Zhen CUI, Jing HOU, Xumin WU, et al. Influence of time-dependent of crack propagation of brittle rock on long-term stability of jinping water diversion tunnel. Chin J Rock Mech Eng. 2014;33(05):983-95.
  • 46. Guanghui HU, Tao XU, Chong-feng CHEN, et al. A microscopic study of creep and fracturing of brittle rocks based on discrete element method. Engineering Mechanics. 2018;35(09):26-36.
  • 47. Xia C, Liu Z, Zhou C. Burger’s bonded model for distinct element simulation of the multi-factor full creep process of soft rock. Journal of Marine Science and Engineering. 2021;9(9):945.
  • 48. Zhao J, Feng XT, Yang C, et al. Study on time-dependent fracturing behaviour for three different hard rock under high true triaxial stress. Rock Mech Rock Eng. 2021;54:1239-55.
  • 49. ZHANG Long-yun, ZHANG Qiang-yong, LI Shu-cai, et al. Unloading rheological tests of hard brittle rock and its long-term strength analysis. Journal of China Coal Society, 2015, 40(10): 2399-2407.
  • 50. Sun C, Jin C, Wang L, et al. Creep damage characteristics and local fracture time effects of deep granite. Bull Eng Geol Env. 2022;81(2):79.
  • 51. JIANG Yuzhou, ZHU Jiebing, WANG Ruihong. Experimental study of unloading creep mechanical properties of alternatively distributed soft and hard rockmass. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(04): 778-784.
  • 52. Wang DC, Fu JW, Wang Q, et al. Effects of particle size and loading rate on the tensile failure of asphalt specimens based on a direct tensile test and particle flow code simulation. Struct Eng Mech. 2023;86(5):607-19.
  • 53. Wang Q, Hu X, Xu C, et al. Time-dependent behavior of saturated silty mudstone under different confining pressures. Bull Eng Geol Env. 2020;79:2621-34.
  • 54. Zhao X, Chen H, Lv J, et al. Triaxial Creep Damage Model for Salt Rock Based on Fractional Derivative. Sustainability. 2023;15(13):10369.
  • 55. Zhao K, Xiong L, Kuang Z, et al. Uniaxial compression creep characteristics and acoustic emission characteristics of two different kinds of red sandstone with different particle sizes. Arab J Sci Eng. 2021;46(11):11195-206.
  • 56. Qian L, Zhang J, Wang X, et al. Creep strain analysis and an improved creep model of granite based on the ratio of deviatoric stress-peak strength under different confining pressures. Environmental Earth Sciences. 2022;81(4):109.
  • 57. Chen J, Jiang Q, Hu Y, et al. Time-dependent performance of damaged marble and corresponding fractional order creep constitutive model. Arab J Geosci. 2020;13:1-13.
  • 58. Mortezaei R, Mohammadi S D, Sarfarazi V, et al. The Influence of Brittleness of Interlayers on the Failure Behavior of Bedding Rock; Experimental Test and Particle Flow Code Simulation. Periodica Polytechnica Civil Engineering, 2023.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2c3101f-83fc-4aab-b5e8-198e7f7f04aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.