PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on safe disposal of cephalosporins based on kinetic pyrolysis mechanism

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on the global goals for cleaner production and sustainable development, the pyrolysis behavior of cephalosporin residues was studied by TG-MS method. The influence of full temperature window on the safe disposal of residues was analyzed based on the “3-2-2” and “1+1” of thermal analysis kinetics, and the gas by-products of thermal degradation were monitored. Results showed that the pyrolysis of distillation residues were divided into low and high-temperature zones, including six stages. Maximum error rate (8.55%) by multiple scan rate was presented based on “3-2-2” pattern and maximum total fluctuation (33.7) by single scan rate was presented based on “1+1” pattern, which implied that the comprehensive multi-level comparison method was very reliable. The E value “E” of six stages showed an increasing trend ranging 166.8 to 872.8 kJ/mol. LgA(mean) was 27.28. Most mechanism function of stage 1, 2 were Z-L-T equation (3D), stage 3, 4, 6 were Avrami-Erofeev equation (AE3, AE4, AE2/3) and stage 5 was Reaction Order (O2). In addition, various small molecular micromolecule substances were detected such as C2H4O, C2H6, NH3, CH4, CO2 under full temperature windows and a possible pyrolysis path of residues was provided.
Rocznik
Strony
52--60
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wz.
Twórcy
autor
  • School of Environmental Science and Engineering, Hebei University of Science and Technology, China
  • National and Local Joint Engineering Center of Volatile Organic Compounds & Odorous Pollution Control Technology, China
autor
  • School of Environmental Science and Engineering, Hebei University of Science and Technology, China
  • National and Local Joint Engineering Center of Volatile Organic Compounds & Odorous Pollution Control Technology, China
autor
  • School of Environmental Science and Engineering, Hebei University of Science and Technology, China
  • National and Local Joint Engineering Center of Volatile Organic Compounds & Odorous Pollution Control Technology, China
autor
  • School of Environmental Science and Engineering, Hebei University of Science and Technology, China
  • National and Local Joint Engineering Center of Volatile Organic Compounds & Odorous Pollution Control Technology, China
autor
  • School of Environmental Science and Engineering, Hebei University of Science and Technology, China
  • National and Local Joint Engineering Center of Volatile Organic Compounds & Odorous Pollution Control Technology, China
autor
  • School of Environmental Science and Engineering, Hebei University of Science and Technology, China
  • National and Local Joint Engineering Center of Volatile Organic Compounds & Odorous Pollution Control Technology, China
autor
  • School of Environmental Science and Engineering, Hebei University of Science and Technology, China
  • National and Local Joint Engineering Center of Volatile Organic Compounds & Odorous Pollution Control Technology, China
autor
  • School of Environmental Science and Engineering, Hebei University of Science and Technology, China
  • National and Local Joint Engineering Center of Volatile Organic Compounds & Odorous Pollution Control Technology, China
  • Hebei provincial pollutant emission rights trading service center, China
autor
  • The State Grid Hebei Electric Power Company Electric Power Research Institute, China
Bibliografia
  • 1. Pieper, M., Kumpert, M., König, B., Schleich, H., Bayer, T. & Gröger, H. (2018). Process development for synthesizing the cephalosporin antibiotic cefotaxime in batch and flow mode. Org. Process. Res. Dev., 22, 947–954. DOI: 10.1021/acs.oprd.8b00064.
  • 2. Costa, F., Lago, A., Rocha, V., Barros, O., Costa, L., Vipotnik, Z., Silva, B. & Tavares, T. (2019). A review on biological processes for pharmaceuticals wastes abatement-a growing threat to modern society. Environ. Sci. Technol., 53, 7185–7202. DOI: 10.1021/acs.est.8b06977.
  • 3. Wang, Q.H., Zhang, L., Tian, S., Sun, P.T.C. & Xie, W. (2007). A pilot-study on treatment of a waste gas containing butyl acetate, n-butyl alcohol and phenylacetic acid from pharmaceutical factory by bio-trickling filter. Biochem. Eng. J., 37, 42–48.
  • 4. Guo, C., Chen, Y., Chen, J., Wang, X.J., Zhang, G.Q., Wang, J.X., Cui, W.F. & Zhang, Z.Z. (2014). Combined hydrolysis acidification and bio-contact oxidation system with air-lift tubes and activated carbonbioreactor for oilfield waste-water treatment [J]. Bioresour. Technol., 169, 630–636 DOI: 10.1016/j.biortech.2014.07.018.
  • 5. Wu, D., Huang, X.H., Sun, J.Z., Graham, D.W. & Xie, B. (2017). Antibiotic resistance genes and associated microbial community conditions in aging landfill systems. Environ. Sci. Technol., 51, 12859–12867. DOI: 10.1021/acs.est.7b03797.
  • 6. Xu, T., Xu, F., Hu, Z., Chen, Z. & Xiao, B. (2017). Non-iso-thermal kinetics of biomass-pyrolysis-derived-tar (BPDT) thermal decomposition via thermogravimetric analysis. Energy. Convers. Manag., 138, 452–460. DOI: 10.1016/j.enconman.2017.02.013.
  • 7. Jiang, L., Yuan, X., Li, H., Xiao, Z., Liang, J., Wang, H., Wu, Z., Chen, X. & Zeng, G. (2015). Pyrolysis and combustion kinetics of sludge–camphor pellet thermal decomposition using thermogravimetric analysis. Energy. Convers. Manag, 106, 282–289. DOI: 10.1016/j.enconman.2015.09.046.
  • 8. Carrasco, F., Gámez-Pérez, J., Santana, O.O. & Maspoch, M.L. (2011). Processing of poly(lactic acid)/organomontmorillonite nanocomposites: microstructure, thermal stability and kinetics of the thermal decomposition. Chem. Eng. J., 178. 451–460. DOI: 10.1016/j.cej.2011.10.036.
  • 9. Hu, Q., Yang, H., Xu, H., Wu, Z., Lim, C.J., Bi, X.T. & Chen, H. (2018).Thermal behavior and reaction kinetics analysis of pyrolysis and subsequent in-situ gasification of torrefied biomass pellets. Energy. Convers. Manag., 161, 205–214. DOI: 10.1016/j.enconman.2018.02.003.
  • 10. Wu, D., Li, L., Wang, J.K., Study on decomposition process and thermal analysis kinetics of ammonium sulfate[J/OL]. Inorganic. Salt. Industry, 1-13[2023-07-29]. DOI: 10.19964/j. issn.1006-4990.2022-0105.
  • 11. Wu, X.R. & Qiao, J.J. (2023). Combustion process and kinetic analysis of wheat starch[J]. Chem. Eng. J., 51(04), 62–67.
  • 12. Zhu, W., Tian, B., Zhang, X.R. & Zhang, H., Kinetics study on thermal analysis of fischer-tropsch synthetic slag wax[J/OL]. Clean. Coal. Technology:1-12[2023-07-29].
  • 13. Salema, A.A., Ting, R.M.W. & Shang, Y.K. (2019). Pyrolysis of blend (oil palm biomass and sawdust) biomass using TG-MS. Biores. Technol., 274, 439–446. DOI: 10.1016/j.biortech.2018.12.014.
  • 14. Song, Y., Hu, J., Liu, J., Evrendilek, F. & Buyukada, M. (2020). Catalytic effects of CaO, Al2O3, Fe2O3, and red mud on Pteris vittata combustion: emission, kinetic and ash conversion patterns. J. Clean. Prod., 252, 119646.
  • 15. Qiao, Y., Wang, B., Zong, P., Tian, Y., Xu, F., Li, D., Li, F. (2019). Thermal behavior, kinetics and fast pyrolysis characteristics of palm oil: analytical TG-FTIR and Py-GC/MS study. Energy. Convers. Manag., 199, 111964. DOI: 10.1016/j. enconman.2019.111964.
  • 16. Yi, H., Yang, Z., Tang, X., Zhao, S., Gao, F., Wang, J., Huang, Y., Yang, K., Shi, Y. & Xie, X. (2018). Variations of apparent activation energy based on thermodynamics analysis of zeolitic imidazolate frameworks including pyrolysis and combustion. Energy, 151, 782–798. DOI: 10.1016/j.energy.2018.03.107.
  • 17. Ren, D., Liu, X., Feng, X., Lu, L., Ouyang, M., Li, J. & He, X. (2018). Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components. Appl. Energy, 228, 633–644. DOI: 10.1016/j.apenergy.2018.06.126.
  • 18. Liu, J., Huang, L., Xie, W., Kuo, J., Buyukada, M. & Evrendilek, F. (2019). Characterizing and optimizing (CO-) pyrolysis as a function of different feedstocks, atmospheres, blend ratios, and heating rates. Bioresour. Technol., 277, 104–116. DOI: 10.1016/j.biortech.2019.01.003.
  • 19. Zou, H., Li, W., Liu, J., Buyukada, M. & Evrendilek, F. (2020). Catalytic combustion performances, kinetics, reaction mechanisms and gas emissions of lentinus edodes. Bioresour. Technol., 300, 122630. DOI: 10.1016/j.biortech.2019.122630.
  • 20. Huang, J., Liu, J., Kuo, J., Xie, W., Zhang, X., Chang, K., Buyukada, M. & Evrendilek, F. (2019). Kinetics, thermodynamics, gas evolution and empirical optimization of (CO-) combustion performances of spent mushroom substrate and textile dyeing sludge. Bioresour. Technol., 280, 313–324. DOI: 10.1016/j.biortech.2019.02.011.
  • 21. Zhang, J., Liu, J., Evrendilek, F., Zhang, X. & Buyukada, M. (2019). TG-FTIR and Py-GC/MS analyses of pyrolysis behaviors and products of cattle manure in CO2 and N2 atmospheres: kinetic, thermodynamic, and machine-learning models. Energy. Convers. Manag., 195, 346–359. DOI: 10.1016/j. enconman.2019.05.019.
  • 22. Hu, J., Song, Y., Liu, J., Evrendilek, F., Buyukada, M., Yan, Y. & Li, L. (2020). Combustions of torrefaction-pretreated bamboo forest residues: physicochemical properties, evolved gases, and kinetic mechanisms. Biores. Technol., 304, 122960. DOI: 10.1016/j.biortech.2020.122960.
  • 23. Cai, H., Liu, J., Xie, W., Kuo, J., Buyukada, M. & Evrendilek, F. (2019). Pyrolytic kinetics, reaction mechanisms and products of waste tea via TG-FTIR and Py-GC/MS. Energy. Convers. Manag., 184, 436–447. DOI: 10.1016/j.enconman.2019.01.031.
  • 24. Liu, Z.G., Wang, Z., Tang, J., Wang, H.T. & Long, H.M. (2015). Non-isothermal thermal decomposition kinetics of high iron gibbsite ore based on popescu method. T. Nonferr. Metal. Soc., 25, 2415–2421. DOI: 10.1016/S1003-6326(15)63857-2.
  • 25. He, Q., Ding, L., Gong, Y., Li, W., Wei, J. & Yu, G. (2019). Effect of torrefaction on pinewood pyrolysis kinetics and thermal behavior using thermogravimetric analysis. Bioresour. Technol., 280, 104–111. DOI: 10.1016/j.biortech.2019.01.138.
  • 26. Biasin, A., Fabro, J., Michelon, N., Glisenti, A. & Canu, P. (2019). Investigation of thermal effects on heterogeneous exothermic reactions and their impact on kinetics studies. Chem. Eng. J., 377, 120179. DOI: 10.1016/j.cej.2018.10.116.
  • 27. Yang, Z., Zhang, L., Zhang, Y., Bai, M., Zhang, Y., Yue, Z. & Duan, E. (2020). Effects of apparent activation energy in pyrolytic carbonization on the synthesis of MOFs-carbon involving thermal analysis kinetics and decomposition mechanism. Chem. Eng. J., 395, 124980. DOI: 10.1016/j.cej.2020.124980.
  • 28. Yang, Z., Yi, H., Tang, X., Zhao, S., Yu, Q., Gao, F., Zhou, Y., Wang, J., Huang, Y., Yang, K. & Shi, Y. (2017). Potential demonstrations of “hot spots” presence by adsorption-desorption of toluene vapor onto granular activated carbon under microwave radiation. Chem. Eng. J., 319, 191–199. DOI: 10.1016/j.cej.2017.02.157.
  • 29. Zhu, D., Huang, Y., Cao, J.J., Lee, S.C., Chen, M. & Shen, Z. (2019). Cobalt nanoparticles encapsulated in porous nitrogen-doped carbon: oxygen activation and efficient catalytic removal of formaldehyde at room temperature. Appl. Catal. B, 258, 117981. DOI: 10.1016/j.apcatb.2019.117981.
  • 30. Marpaung, F., Kim, M., Khan, J.H. (2019). Konstantinov, K., Yamauchi, Y., Hossain, M.S.A., Na, J. & Kim, J., Metal-organic framework (MOF)-derived nanoporous carbon materials, Chem. Asian. J., 14, 1331–1343. DOI: 10.1002/asia.201900026.
  • 31. Zhang, J.X., Zhou, L.N., Cheng, J., Yin, X., Kuang, W.T. & Li, Y.J. (2019). CoII-catalyzed room-temperature growth of MnO2 on the skeleton of carbonized zeolitic imidazolate framework-67 crystals for boosting oxygen reduction reaction. J. Mater. Chem. A, 7, 4699–4704. DOI: 10.1039/C8TA11658J.
  • 32. Jaria, G., Lourenço, M.A.O., Silva, C.P., Ferreira, P., Otero, M., Calisto, V. & Esteves, V.I. (2020). Effect of the surface functionalization of a waste-derived activated carbon on pharmaceuticals’ adsorption from water. J. Mol. Liq., 29,9, 112098. DOI: 10.1016/j.molliq.2019.112098.
  • 33. Silva, C.P., Jaria, G., Otero, M., Esteves, V.I. & Calisto, V. (2018). Waste-based alternative adsorbents for the remediation of pharmaceutical contaminated waters: Has a step forward already been taken? Biores. Technol., 250, 888–901. DOI: 10.1016/j.biortech.2017.11.102.
  • 34. Yamuna Rani, M., Bhagawan, D., Himabindu, V., Venkateswara Reddy, V. & Saritha, P. (2016). Preparation and characterization of green bricks using pharmaceutical industrial wastes. Environ. Sci. Pollut. Res., 23, 9323–9333. DOI: 10.1007/s11356-015-5191-2.
  • 35. Klejnowska, K., Pikon, K., Scierski, W., Skutil, K., Bogacka, M. (2020). Influence of temperature on the composition and calorific value of gases produced during the pyrolysis of waste pharmaceutical blisters. Appl. Sci., 737, 1–10. DOI: 10.3390/app10030737.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2be38f7-6ebf-4d98-8956-10613bfbf876
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.