PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

SPAD timing jitter modeling using Fourier series

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a simple analytical model for the Gaussian’s peak response part of the timing jitter of single photon avalanche diodes (SPADs) is proposed using Fourier series in the multiplication time calculation. The multiplication time characterizes avalanche multiplication process speed in which low multiplication time suggests a swifter response time and a higher avalanche speed. This paper presents an analytical solution which results in a more accurate multiplication time. The model is verified for SPADs implemented in 0.15 and 0.18 μm standard CMOS process, and the accuracy of the proposed analytical method in full-width at half-maximum (FWHM) calculation is improved by 25% and 5% with respect to the numerical model, respectively.
Czasopismo
Rocznik
Strony
239--248
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
  • School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
Bibliografia
  • [1] XU H., PANCHERI L., DALLA BETTA G.-F., STOPPA D., Design and characterization of a p+/n-well SPAD array in 150nm CMOS process, Optics Express 25(11), 2017: 12765-12778. https://doi.org/10.1364/OE.25.012765
  • [2] KARAMI M.A., AMIRI-SANI A., GHORMISHI M.H., Tunneling in submicron CMOS single-photon avalanche diodes, Chinese Optics Letters 12(1), 2014: 012501.
  • [3] RICHARDSON J.A., WEBSTER E.A.G., GRANT L.A., HENDERSON R.K., Scaleable single-photon avalanche diode structures in nanometer CMOS technology, IEEE Transactions on Electron Devices 58(7), 2011: 2028-2035. https://doi.org/10.1109/TED.2011.2141138
  • [4] RATTI L., BROGI P., COLLAZUOL G., DALLA BETTA G.-F., FICORELLA A., LODOLA L., MARROCCHESI P.S., MATTIAZZO S., MORSANI F., MUSACCI M., PANCHERI L., VACCHI C., Dark count rate degradation in CMOS SPADs exposed to X-rays and neutrons, IEEE Transactions on Nuclear Science 66(2), 2019: 567-574. https://doi.org/10.1109/TNS.2019.2893233
  • [5] KE S., LIN S., HUANG W., WANG J., CHENG B., LIANG K., LI C., CHEN S., Geiger mode theoretical study of a wafer-bonded Ge on Si single-photon avalanche photodiode, Journal of Physics D: Applied Physics 50(5), 2017: 055106. https://doi.org/10.1088/1361-6463/aa52b9
  • [6] LI H., REN X., YING L., BALASUBRAMANIAN S., KLENERMAN D., Measuring single-molecule nucleic acid dynamics in solution by two-color filtered ratiometric fluorescence correlation spectroscopy, Proceedings of the National Academy of Sciences 101(40), 2004: 14425-14430. https://doi.org/10.1073/pnas.0404295101
  • [7] DAUBE-WITHERSPOON M.E., MATEJ S., WERNER M.E., SURTI S., KARP J.S., Comparison of list-mode and DIRECT approaches for time-of-flight PET reconstruction, IEEE Transactions on Medical Imaging 31(7), 2012: 1461-1471. https://doi.org/10.1109/TMI.2012.2190088
  • [8] BRONZI D., VILLA F., TISA S., TOSI A., ZAPPA F., SPAD figures of merit for photon- counting, photontiming, and imaging applications: a review, IEEE Sensors Journal 16(1), 2016: 3-12. https://doi.org/10.1109/JSEN.2015.2483565
  • [9] SPINELLI A., LACAITA A.L., Physics and numerical simulation of single photon avalanche diodes, IEEE Transactions on Electron Devices 44(11), 1997: 1931-1943. https://doi.org/10.1109/16.641363
  • [10] ACERBI F., FERRI A., GOLA A., CAZZANELLI M., PAVESI L., ZORZI N., PIEMONTE C., Characterization of single-photon time resolution: from single SPAD to silicon photomultiplier, IEEE Transactions on Nuclear Science 61(5), 2014: 2678-2686. https://doi.org/10.1109/TNS.2014.2347131
  • [11] KARAMI M.A., GERSBACH M., YOON H.J., CHARBON E., A new single-photon avalanche diode in 90nm standard CMOS technology, Optics Express 18(21), 2010: 22158-22166. https://doi.org/10.1364/OE.18.022158
  • [12] SUN F., XU Y., WU Z., ZHANG J., A simple analytic modeling method for SPAD timing jitter prediction, IEEE Journal of the Electron Devices Society 7, 2019: 261-267. https://doi.org/10.1109/JEDS.2019.2895151
  • [13] ZHOU X., NG J.S., TAN C.H., A simple Monte Carlo model for prediction of avalanche multiplication process in silicon, Journal of Instrumentation 7(08), 2012: P08006. https://doi.org/10.1088/1748-0221/7/08/P08006
  • [14] PLIMMER S.A., DAVID J.P.R., ONG D.S., LI K.F., A simple model for avalanche multiplication including deadspace effects, IEEE Transactions on Electron Devices 46(4), 1999: 769-775. https://doi.org/10.1109/16.753712
  • [15] PETTICREW J.D., DIMLER S.J., ZHOU X., MORRISON A.P., TAN C.H., NG, J.S., Avalanche breakdown timing statistics for silicon single photon avalanche diodes, IEEE Journal of Selected Topics in Quantum Electronics 24(2), 2018: 3801506. https://doi.org/10.1109/JSTQE.2017.2779834
  • [16] SHOJAEE F., HADDADIFAM T., KARAMI M.A., Jitter modulation by photon wavelength variation in single-photon avalanche diodes (SPADs), Optical and Quantum Electronics 53(7), 2021: 397. https://doi.org/10.1007/s11082-021-02991-z
  • [17] XU Y., XIANG P., XIE X., HUANG Y., A new modeling and simulation method for important statistical performance prediction of single photon avalanche diode detectors, Semiconductor Science and Technology 31(6), 2016: 065024. https://doi.org/10.1088/0268-1242/31/6/065024
  • [18] LAFORCE F., Low noise optical receiver using Si APD, Proceedings of the SPIE, Vol. 7212, Optical Components and Materials VI, 2009: 721210. https://doi.org/10.1117/12.809071
  • [19] KUVÅS R., LEE C.A., Quasistatic approximation for semiconductor avalanches, Journal of Applied Physics 41(4), 1970: 1743-1755. https://doi.org/10.1063/1.1659100
  • [20] Silvaco ATLAS Device Simulation Software User’s Manual, 2018.
  • [21] PANCHERI L., STOPPA D., Low-noise single photon avalanche diodes in 0.15 μm CMOS technology, [In] 2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC), IEEE, 2011: 179-182. https://doi.org/10.1109/ESSDERC.2011.6044205
  • [22] HOLWAY L.H., Electron-hole avalanches with constant ionization coefficients, IEEE Transactions on Electron Devices 26(6), 1979: 991-993. https://doi.org/10.1109/T-ED.1979.19532
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2b90cdb-17fb-44fe-81e0-8ffb21da6bf6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.