PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Development of Resource-Saving Technologies in the Use of Sedimentation Inhibitors for Reverse Osmosis Installations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The processes of desalination of weakly mineralized waters using a reverse osmosis membrane were studied. The operational efficiency of membranes is limited mainly by membrane contamination. It was shown that the preliminary mechanical water purification helps to increase the productivity and selectivity of the membrane. One of the main causes of membrane contamination is the formation of carbonate deposits on their surface. One way to prevent membrane contamination is to dose antiscalants. It was established that the use of hydrolyzed polyacrylonitrile (HPAN) and hydrolyzed polyacrylamide (HPAA) as a stabilizer of scale formation is effective for concentrates of reverse osmosis desalination of water.
Rocznik
Strony
206--215
Opis fizyczny
Bibliogr. 57 poz., rys., tab.
Twórcy
autor
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Inorganic Substances and Ecology, Faculty of Chemical Technology and Ecology, Ukrainian State Chemical Technology University, Gagarin Ave. 8, 49005 Dnipro, Ukraine
  • Department of Physical Chemistry, Faculty of Chemical Technology, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
Bibliografia
  • 1. Abualhaija M., Mohammad A.H. 2021. Assessing Water Quality of Kufranja Dam (Jordan) for Drinking and Irrigation: Application of the Water Quality Index. J. Ecol. Eng., 22(9), 159–175. DOI: 10.12911/22998993/141531
  • 2. Amjad Z., Demadis K.D. 2015. Mineral Scales and Deposits: Scientific and Technological Approaches. Elsevier, Amsterdam.
  • 3. Ang W., Mohammad A., Benamor A., Hilal N., Leo C. 2016. Hybrid coagulation–NF membrane process for brackish water treatment: effect of antiscalant on water characteristics and membrane fouling. Desalination, 393, 144–150. DOI: 10.1016/j.desal.2016.01.010
  • 4. Antony A., Low J. H., Gray S., Childress A. E., LeClech P., Leslie G. 2011. Scale formation and control in high pressure membrane water treatment systems: A review. Journal of Membrane Science, 383(1–2), 1–16. DOI: 10.1016/j.memsci.2011.08.054
  • 5. Ashfaq M.Y., Al-Ghouti M.A., Qiblawey H., Rodrigues D.F., Hu Y., Zouari N. 2019. Isolation, identification and biodiversity of antiscalant degrading seawater bacteria using MALDI-TOF-MS and multivariate analysis. Sci. Total Environ., 656, 910–920. DOI: 10.1016/j.scitotenv.2018.11.477
  • 6. Baoxia M.I., Elimelech M. 2010. Gypsum scaling and cleaning in forward osmosis: Measurements and mechanisms. Environmental Science and Technology, 44(6), 2022–2028. DOI: 10.1021/es903623r
  • 7. Biggs E.M., Bruce E., Boruff B., Duncan J.M.A., Horsley J., Pauli N., McNeill K., Neef A., Van Ogtrop F., Curnow J., Haworth B., Duce S., Imanari Y. 2015. Sustainable development and the water–energy–food nexus: a perspective on livelihoods. Environ Sci Policy, 4, 389–397. DOI: 10.1016/j.envsci.2015.08.002
  • 8. Chauhan K., Sharma P., Chauhan G.S. 2015. Chapter 29 - Removal/Dissolution of Mineral Scale Deposits. Scientific and Technological Approaches, 701– 720. DOI: 10.1016/B978-0-444-63228-9.00029-2
  • 9. Chaussemier M., Pourmohtasham E., Gelus D., Pécoul N., Perrot H., et al. 2015. State of art of natural inhibitors of calcium carbonate scaling. A review article. Desalination, Elsevier, 356, 47–55. DOI: 10.1016/j.desal.2014.10.014
  • 10. Chen L., Chen Z., Wang Y., Mao Y., Cai Z. 2021. Effective treatment of leachate concentrate using membrane distillation coupled with electrochemical oxidation. Separation and Purification Technology, 267. DOI: 10.1016/j.seppur.2021.118679
  • 11. Chesters S.P. 2009. Innovations in the inhibition and cleaning of reverse osmosis membrane scaling and fouling. Desalination, 238(1–3), 22–29. DOI: 10.1016/j.desal.2008.01.031.
  • 12. Cohen Y., Semiat R., Rahardianto A. 2017. A Perspective on Reverse Osmosis Water Desalination: Quest for Sustainability. AIChE Journal, 63 (6), 1771–1784. DOI: 10.1002/aic
  • 13. Croué J., Manes C.D., Aubry C., Khan M.T. 2013. Source water quality shaping different fouling scenarios in a full-scale desalination plant at the Red Sea. Water Res., 47(2), 558–568. DOI: 10.1016/j.watres.2012.10.017
  • 14. Da’na D.A., Al-Ghouti M.A., Zouari N., Qiblawey H., Ashfaq M.Y. 2020. Investigating the effect of temperature on calcium sulfate scaling of reverse osmosis membranes using FTIR, SEM-EDX and multivariate analysis. Sci. Total Environ., 703, 134726. DOI: 10.1016/j.scitotenv.2019.134726
  • 15. DiGiulio D.C., Jackson R.B. 2016. Impact to underground sources of drinking water and domestic wells from production well stimulation and completion practices in the Pavillion, Wyoming, Field. Environ Sci Technol., 50, 4524–4536. DOI: 10.1021/acs.est.5b04970
  • 16. Du X., Zhang Z., Carlson K.H., Lee J., Tong T. 2018. Membrane fouling and reusability in membrane distillation of shale oil and gas produced water: Effects of membrane surface wettability. J. Membr. Sci., 567, 199–208. DOI: 10.1016/j.memsci.2018.09.036
  • 17. Filloux E., Wang J., Pidou M., Gernjak W., Yuan Z. 2015. Biofouling and scaling control of reverse osmosis membrane using one-step cleaningpotential of acidified nitrite solution as an agent. J. Membr. Sci., 495, 276–283. DOI: 10.1016/j.memsci.2015.08.034
  • 18. Golovesov V.A., Pervov A.G., Smirnov A.D. 2021. Investigation of scaling mechanism on reverse osmosis membranes using fluorescent antiscalant. Paper presented at the IOP Conference Series: Materials Science and Engineering, , 1030(1). DOI: 10.1088/1757-899X/1030/1/012064
  • 19. Gomelya M.D., Trus I.M., Radovenchyk I.V. 2014. Influence of stabilizing water treatment on weak acid cation exchange resin in acidic form on quality of mine water nanofiltration desalination. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 100–105.
  • 20. Gomelya N., Trus I., Stepova O., Kyryliuk O., Ivanenko O., Khomenko A. 2020. Devising a corrosion inhibitor for steel St-37-2 in wateroil mixture. Eastern-European Journal of Enterprise Technologies, 2/6 (104), 28–33. DOI: 10.15587/1729-4061.2020.199849
  • 21. He F., Sirkar K.K., Gilron J. 2009. Effects of antiscalants to mitigate membrane scaling by direct contact membrane distillation. Journal of Membrane Science, 345(1–2), 53–58. DOI: 10.1016/j.memsci.2009.08.021
  • 22. Kang G., Liu Z., Yu H., Cao Y. 2012. Enhancing antifouling property of commercial polyamide reverse osmosis membrane by surface coating using a brush-like polymer containing poly (ethylene glycol) chains. Desalination and Water Treatment. 37(1–3), 139–145. DOI: 10.1080/19443994.2012.661265
  • 23. Kassymbekov Z., Akmalaiuly K., Kassymbekov G. 2021. Application of Hydrocyclones to Improve Membrane Technologies for Urban Wastewater Treatment. Journal of Ecological Engineering. 22(4), 148–155. DOI: 10.12911/22998993/134043
  • 24. Kavitskaya A., Knyazkova T., Maynarovich A. 2000. Reverse osmosis of concentrated calcium sulphate solutions in the presence of iron (III) ions using composite membranes. Desalination, 132(1–3), 281–286. DOI: 10.1016/S0011-9164(00)00161-2
  • 25. Khan M.T., De O., Manes C., Aubry C., Gutierrez L., Croue J.P. 2013. Kinetic study of seawater reverse osmosis membrane fouling. Environ. Sci. Technol. 47(19), 10884–10894. DOI: 10.1021/es402138e
  • 26. Kucera J. 2019. Biofouling of polyamide membranes: fouling mechanisms, current mitigation and cleaning strategies, and future prospects. Membranes, 9(9), 111, DOI: 10.3390/membranes9090111
  • 27. Li C., Yang Q., Lu S., Liu Y. 2021. Adsorption and mechanism study for phosphonate antiscalant HEDP removal from reverse osmosis concentrates by magnetic La/Zn/Fe3O4@PAC composite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 613 DOI: 10.1016/j.colsurfa.2020.126056
  • 28. Litynska M., Antoniuk R., Tolstopalova N., Astrelin I. 2019. Ferric Oxyhydroxide as Fouling Prevention Reagent for Low-Pressure Membranes. J. Ecol. Eng., 20(3), 77–84. DOI: 10.12911/22998993/99736
  • 29. Mangal M.N., Salinas-Rodriguez S.G., Dusseldorp J., Kemperman A.J.B., Schippers J.C., Kennedy M.D., van der Meer W.G.J. 2021. Effectiveness of antiscalants in preventing calcium phosphate scaling in reverse osmosis applications. Journal of Membrane Science, 623, DOI: 10.1016/j.memsci.2021.119090
  • 30. Mi B., Elimelech M. 2013. Silica scaling and scaling reversibility in forward osmosis. Desalination 312, 75–81. DOI: 10.1016/j.desal.2012.08.034
  • 31. Miller S., Shemer H., Semiat R. 2015. Energy and environmental issues in desalination. Desalination, 366, 2–8. DOI: 10.1016/j.desal.2014.11.034
  • 32. Pervov A.G., Andrianov A.P. 2017. Assessment of the effectiveness of new “green” scale inhibitors used in reverse-osmosis seawater desalination. Petroleum Chemistry, 57, 139–152.
  • 33. Polyakov V., Kravchuk A., Kochetov G., Kravchuk O. 2019. Clarification of aqueous suspensions with a high content of suspended solids in rapid sand filters. Eureca: Physics and engineering, 1(20), 28–35. DOI: 10.21303/2461-4262.2019.00827
  • 34. Popov K., Oshchepkov M., Afanas’eva E., Koltinova E., Dikareva Y., Rönkkömäki H. 2019. A new insight into the mechanism of the scale inhibition: DLS study of gypsum nucleation in presence of phosphonates using nanosilver dispersion as an internal light scattering intensity reference. Collid Surf. A Physicochem. Eng. Asp., 560, 122–129. DOI: 10.1016/j.colsurfa.2018.10.015
  • 35. Pramanik B.K., Gao Y., Fan L., Roddick F.A., Liu Z. 2017. Antiscaling effect of polyaspartic acid and its derivative for RO membranes used for saline wastewater and brackish water desalination. Desalination, 404, 224–229. DOI: 10.1016/j.desal.2016.11.019.
  • 36. Qiang X., Sheng Z., Zhang H. 2013. Study on scale inhibition performances and interaction mechanism of modified collagen. Desalination, 309, 237–242. DOI: 10.1016/j.desal.2012.10.025
  • 37.Radovenchyk I., Trus I., Halysh V., Krysenko T.,Chuprinov E., Ivanchenko A. 2021. Evaluation of Optimal Conditions for the Application of Capillary Materials for the Purpose of Water Deironing. Ecol. Eng. Environ. Technol., 22(2), 1–7. DOI: 10.12912/27197050/133256
  • 38. Rahman F. 2013. Calcium sulfate precipitation studies with scale inhibitors for reverse osmosis desalination. Desalination, 319, 79–84. DOI: 10.1016/j.desal.2013.03.027
  • 39. Rashed E.A., Elshafei M.M., Hiekl M.A., Matta M.E., Naguib K.M. 2016. On-line dosing of Ammonium Biflouride for reduction of silica scaling on RO membranes. HBRC Journal, 12(2), 205–211. DOI: 10.1016/j.hbrcj.2014.10.001
  • 40. Remeshevska I., Trokhymenko G., Gurets N., Stepova O., Trus I., Akhmedova V. 2021. Study of the Ways and Methods of Searching Water Leaks in Water Supply Networks of the Settlements of Ukraine Ecol. Eng. Environ. Technol., 22(4), 14–21. DOI: 10.12912/27197050/137874
  • 41. Ruengruehan K., Kang S., Sanphoti N., Khaodhiar S. 2020. Effect of Surfactant Properties on the Performance of Forward Osmosis Membrane Process. J. Ecol. Eng., 21(8), 10–17. doi.org/10.12911/22998993/127432
  • 42. Sevostianov I., Ivanchuk Y.,Polishchuk J., Lutsyk V., Dobrovolska K., Smailova S., Wójcik W., Kalizhanova A. 2021. Development of the Scheme of the Installation for Mechanical Wastewater Treatment. J. Ecol. Eng., 22(1), 20–28. DOI: 10.12911/22998993/128693
  • 43. Sharma A., Agnihotri B., Vemavarapu S., Gupta A. B. 2020. Chemistry of inorganic scaling in full-scale reverse osmosis plants treating brackish groundwater. Journal of Environmental Chemical Engineering, 8 (5), 104108. DOI: 10.1016/j.jece.2020.104108
  • 44. Shemer H., Hasson D., Semiat R. 2013. Review of the state of the art of antiscalant selection. In: Zahid Amjad, editor. Mineral Scales in Biological and Industrial Systems. Boca Raton, FL: CRC Press, 227–256.
  • 45. Sweity A., Oren Y., Ronen Z., Herzberg M. 2013. The influence of antiscalants on biofouling of RO membranes in seawater desalination. Water Res., 47(10), 3389–3398. DOI: 10.1016/j.watres.2013.03.042
  • 46. Tijing L.D., Woo Y.C., Choi J., Lee S., Kim S., Shon H.K. 2015. Fouling and its control in membrane distillation-A review. Journal of Membrane Science, 475, 215–244. DOI: 10.1016/j.memsci.2014.09.042
  • 47. Tong T., Wallace A.F., Zhao S., Wang Z. 2019. Mineral scaling in membrane desalination: Mechanisms, mitigation strategies, and feasibility of scaling-resistant membranes. Journal of Membrane Science, 579, 52–69. DOI: 10.1016/j.memsci.2019.02.049
  • 48. Trus I.M., Fleisher H.Y., Tokarchuk V.V., Gomelya M.D., Vorobyova V.I. 2017. Utilization of the residues obtained during the process of purification of mineral mine water as a component of binding materials. Voprosy Khimii i Khimicheskoi Tekhnologii, (6), 104–109.
  • 49. Trus I.M., Gomelya M.D. 2021. Desalination of mineralized waters using reagent methods. Journal of Chemistry and Technologies, 29(3), 417–424. DOI: 10.15421/jchemtech.v29i3.214939
  • 50. Trus I., Gomelya M. 2021. Effectiveness nanofiltration during water purification from heavy metal ions. Journal of Chemical Technology and Metallurgy, 56(3), 615–620.
  • 51. Trus I., Radovenchyk I., Halysh V., Skiba M., Vasylenko I., Vorobyova V., Hlushko O., Sirenko L. 2019. Innovative Approach in Creation of Integrated Technology of Desalination of Mineralized Water. Journal of Ecological Engineering. 20(8), 107–113. DOI: 10.12911/22998993/110767
  • 52. Trus І., Gomelya N., Halysh V., Radovenchyk I., Stepova O., Levytska O. 2020. Technology of the comprehensive desalination of wastewater from mines. Eastern-European Journal of Enterprise Technologies, 3/6 (105), 21–27. DOI: 10.15587/1729-4061.2020.206443
  • 53. Vorobyova V.I., Skiba M.I., Trus I.M. 2019. Apricot pomaces extract (prunus armeniaca l.) as a highly efficient sustainable corrosion inhibitor for mild steel in sodium chloride solution. International Journal of Corrosion and Scale Inhibition, 8(4), 1060–1083. DOI: 10.17675/2305-6894-2019-8-4-15
  • 54. Warsinger D.M., Tow E.W., Swaminathan J., Lienhard V.J.H. 2017. Theoretical framework for predicting inorganic fouling in membrane distillation and experimental validation with calcium sulfate. Journal of Membrane Science, 528, 381–390. DOI: 10.1016/j.memsci.2017.01.031
  • 55. Yelemanova A., Aliyarova M., Begimbetova A., Jangaskina A., Temirbekova M. 2021. The Use of Membrane Technologies of the CWTP to Obtain Quality Drinking Water J. Ecol. Eng., 22(8), 103–110. DOI: 10.12911/22998993/140263
  • 56. Yelemanova A., Aliyarova M., Begimbetova A., Jangaskina A., Temirbekova M. The Use of Membrane Technologies of the CWTP to Obtain Quality Drinking Water. J. Ecol. Eng., 22(8), 103–110. DOI: 10.12911/22998993/140263
  • 57. Yin Y., Jeong N., Minjarez R., Robbins C.A., Carlson K.H., Tong T. 2021. Contrasting behaviors between gypsum and silica scaling in the presence of antiscalants during membrane distillation. Environmental Science and Technology, 55(8), 5335–5346. DOI: 10.1021/acs.est.0c07190
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2b4f536-5f38-42f6-9831-56894e8e59bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.