PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Classification of EEG Signals Using Adaptive Time-Frequency Distributions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Time-Frequency (t-f) distributions are frequently employed for analysis of new-born EEG signals because of their non-stationary characteristics. Most of the existing time-frequency distributions fail to concentrate energy for a multicomponent signal having multiple directions of energy distribution in the t-f domain. In order to analyse such signals, we propose an Adaptive Directional Time-Frequency Distribution (ADTFD). The ADTFD outperforms other adaptive kernel and fixed kernel TFDs in terms of its ability to achieve high resolution for EEG seizure signals. It is also shown that the ADTFD can be used to define new time-frequency features that can lead to better classification of EEG signals, e.g. the use of the ADTFD leads to 97.5% total accuracy, which is by 2% more than the results achieved by the other methods.
Rocznik
Strony
251--260
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wzory
Twórcy
autor
  • Federal Urdu University, Department of Electrical Engineering, Khayaban-e-Suhrwardy Road, G-7, Islamabad, Pakistan
autor
  • University of Engineering and Technology Peshawar, Department of Electrical Engineering, Peshawar, Pakistan
Bibliografia
  • [1] Joshi, V., Pachori, R.B., Vijesh, A. (2014). Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomedical Signal Processing and Control, 9, 1‒5.
  • [2] Boashash, B., Khan, N., Ben-Jabeur, T. (2015). Time-frequency features for pattern recognition using high resolution TFDs: A tutorial review. Digital Signal Processing, 40, 1‒30.
  • [3] Sharma, R., Pachori, R.B. (2015). Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Systems with Applications, 42(3), 1106‒1117.
  • [4] Boashash, B., Azemi, G., Khan, N. (2015). Principles of time-frequency feature extraction for change detection in non-stationary signals: Application to newborn EEG abnormalitiy detection. Pattern Recognition, 48(3), 616‒627.
  • [5] Sharma, R., Pachori, R.B., Acharya, U.R. (2015). Application of Entropy Measures on Intrinsic Mode Functions for the Automated Identification of Focal Electroencephalogram Signals. Entropy, 17(2), 669‒691.
  • [6] Fu, K., Qu, J., Chai, Y., Zou, T. (2015). Hilbert marginal spectrum analysis for automatic seizure detection in EEG signals. Biomedical Signal Processing and Control, 18, 179‒185.
  • [7] Boashash, B., Azemi, G. (2014). A review of time-frequency matched filter design with application to seizure detection in multichannel newborn EEG. Digital Signal Processing, 28, 28‒38.
  • [8] Wang, K.C. (2015). Time-Frequency Feature Representation Using Multi-Resolution Texture Analysis and Acoustic Activity Detector for Real-Life Speech Emotion Recognition. Sensors, 15(1), 1458‒1478.
  • [9] Sameh, S., Lachiri, Z. (2012). Multiclass Support Vector Machines for Environmental Sounds Classification Using log Gabor Filters. World Academy of Science, Engineering and Technology, 6(8), 1185‒1189.
  • [10] Abdulla, W., Wong, L. (2011). Neonatal EEG signal characteristics using time frequency analysis. Physica A: Statistical Mechanics and its Applications, 390(6), 1096‒1110.
  • [11] Boashash, B. (2015). Time-Frequency Signal Analysis and Processing: A Comprehensive Reference. 2nd ed., Elsevier.
  • [12] Bastiaans, M., Alieva, T., Alieva, L. (2002). On Rotated Time-Frequency Kernels. IEEE Signal Processing Letters, 9(11), 378‒381.
  • [13] Khan, N., Boashash, B. (2015). Multi-component instantaeous frequency estimation using locally adaptive directional time frequency distributions. International Journal of Adaptive Control and Signal Processing, DOI: 10.1002/acs.2583.
  • [14] Liu, Y., Mejias, L., Li, Z. (2012) Fast Power Line Detection and Localization Using Steerable Filter for Active UAV Guidance. XXII Congress of the International Society for Photogrammetry, Remote Sensing, Melbourne.
  • [15] Jacob, M., Unser, M. (2004). Design of steerable filters for feature detection using canny-lie criteria. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(8), 1007‒1019.
  • [16] Boashash, B. (1992). Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals. Proc. of the IEEE, 80(4), 520‒538.
  • [17] Auger, F., Flandrin, P., Lin, Y.T., McLaughlin, S., Meignen, S., Oberlin, T., Wu, H.T. (2013). Timefrequency reassignment and synchrosqueezing: An overview. IEEE Signal Processing Magazine, 30(6), 32‒41.
  • [18] Peng, H., Long, F., Ding, C. (2005). Feature selection based on mutual information criteria of maxdependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1226‒1238.
Uwagi
EN
This research has been partially supported by Qatar Foundation Grant NPRP 4-1303-2-517 and NPRP 6-885-2-364.
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2b4ade1-88fa-4bf1-8f9d-5756df97d2d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.