PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Use of Giant Miscanthus (Miscanthus × Giganteus) in 2G Bioethanol Production

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study aimed to obtain bioethanol from biomass using chemical treatment and enzymatic hydrolysis. Different concentrations of sodium hydroxide (5 and 10%) were used for the delignification process, and enzymatic hydrolysis was carried out using three commercial cellulolytic preparations (Cellic® CTec2, cellulase from Trichoderma reesei and cellulase from Aspergillus species). The final step involved an alcoholic fermentation process using Saccharomyces cerevisiae TYPE II yeast. After enzymatic hydrolysis, the content of reducing sugars was determined in the samples, and the fermentation yield was controlled by determining the ethanol content by pycnometry. Using chemical pretreatment increased the yield of the whole process by at least 50%. The content of reducing sugars after hydrolysis depended on the type of enzyme preparation used for hydrolysis and the use of NaOH in pretreatment. The highest reducing sugars content (45.8 g/dm3) was achieved in a sample of material purified with 5% NaOH, and enzymatic hydrolysis was carried out using Cellic® CTec2. It means the efficiency of the enzymatic hydrolysis process equals 94.69%. The concentration of bioethanol after alcoholic fermentation in this sample was 0.509 g/l.
Rocznik
Tom
Strony
413--422
Opis fizyczny
Bibliogr.37 poz., rys.
Twórcy
  • Department of Agrobiotechnology, Faculty of Mechanical Engineering, Koszalin University of Technology, Poland
  • Department of Agrobiotechnology, Faculty of Mechanical Engineering, Koszalin University of Technology, Poland
  • Department of Agrobiotechnology, Faculty of Mechanical Engineering, Koszalin University of Technology, Poland
  • Faculty of Civil Engineering, Environmental and Geodetic Sciences, Koszalin University of Technology, Poland
Bibliografia
  • Adani, F., Papa, G., Schievano, A., Cardinale, G., D’Imporzano, G., Tambone, F. (2011). Nanoscale Structure of the Cell Wall Protecting Cellulose from Enzyme Attack. Environmental Science & Technology, 45(3), 1107-1113. https://doi.org/10.1021/es1020263
  • Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101(13), 4851-4861. https://doi.org/10.1016/j.biortech.2009.11.093
  • Balat, M., Balat, H. (2009). Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy, 86(11), 2273-2282. https://doi.org/10.1016/j.apenergy.2009.03.015
  • Biernat, K. (2007). Second Generation Biofuels. Studia Ecologiae et Bioethicae, 5(1), 281-294. https://doi.org/10.21697/seb.2007.5.1.18
  • Burczyk, H. (2012). Biomasa z roślin jednorocznych dla energetyki zawodowej. Czysta Energia, 2, 30-32. (in Polish)
  • Chen, F., Dixon, R.A. (2007). Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnology, 25(7), 759-761. https://doi.org/10.1038/nbt1316
  • Dąbkowska, K., Chmielewska, I., Pilarek, M., Szewczyk, K.W. (2012). Influence of pretreatment methods on enzyme catalyzed hydrolysis of lignocellulose biomass. Inżynieria i Aparatura Chemiczna, 4, 112-114.
  • Dąbkowska, K., & Pilarek, M. (2013). Enzymatic hydrolysis of lignocel- lulose biomass from energetic willow (Salix viminalis L.). Inżynieria i Aparatura Chemiczna, 6. Retrieved from http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-2f05e443-aac6-4df1-9ce2-9dd16594f2a7
  • Directive (EU) 2015/1513 of the European Parliament and of the Council of 9 September 2015 amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sources (Text with EEA relevance). 239 OJ L § (2015).
  • Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (recast) (Text with EEA relevance.), 328 OJ L § (2018).
  • Ebringerová, A., Hromádková, Z., Heinze, T. (2005). Hemicellulose. In T. Heinze (Ed.), Polysaccharides I, 1-67). Berlin/Heidelberg: Springer-Verlag. https://doi.org/10.1007/b136816
  • Ghose, T.K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257-268. https://doi.org/10.1351/pac198759020257
  • Gumienna, M., Lasik, M., Czarnecki, Z. (2009). Wykorzystanie odpadów przemysłu spożywczego do produkcji alkoholu etylowego. Bromatologia i Chemia Toksykologiczna, XLII(3), 969-974. (in Polish)
  • Gupta, R., Khasa, Y.P., Kuhad, R.C. (2011). Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohydrate Polymers, 84(3), 1103-1109. https://doi.org/10.1016/j.carbpol.2010.12.074
  • Han, M., Choi, G.-W., Kim, Y., Koo, B. (2011). Bioethanol production by Miscanthus as a lignocellulosic biomass: Focus on high efficiency conversion to glucose and ethanol. BioResources, 6(2), 1939-1953. https://doi.org/10.15376/biores.6.2.1939-1953
  • Hendriks, A.T.W.M., Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10-18. https://doi.org/10.1016/j.biortech.2008.05.027
  • Kim, J.S., Lee, Y.Y., Kim, T.H. (2016). A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, 199, 42-48. https://doi.org/10.1016/j.biortech.2015.08.085
  • Kordala, N., Lewandowska, M., Świątek, M., Bednarski, W. (2013). The evaluation of the dependence of the effects of enzymatic hydrolysis of miscanthus giganteus and rape straw polysaccharides on the conditions of ammonia pretreatment. Acta Sci. Pol., Biotechnologia, 12(3).
  • Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P. (2009). Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Industrial & Engineering Chemistry Research, 48(8), 3713-3729. https://doi.org/10.1021/ie801542g
  • Lee, W.-C., Kuan, W.-C. (2015). Miscanthus as cellulosic biomass for bioethanol production. Biotechnology Journal, 10(6), 840-854. https://doi.org/10.1002/biot.201400704
  • Leja, M., Mareczek, A., Wyzgolik, G., Klepacz-Baniak, J., Czekońska, K. (2007). Antioxidative properties of bee pollen in selected plant species. Food Chemistry, 100, 237-240. https://doi.org/10.1016/j.foodchem.2005.09.047
  • Li, F., Ren, S., Zhang, W., Xu, Z., Xie, G., Chen, Y., … Peng, L. (2013). Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/H2SO4 pretreatments in Miscanthus. Bioresource Technology, 130, 629-637. https://doi.org/10.1016/j.biortech.2012.12.107
  • Martyniak, D., Zurek, G., Martyniak, M. (2017). Trawy wieloletnie na cele energetyczne – Nowe wyzwanie dla gospodarstw rolniczych. Wieś Jutra, (1). Retrieved from http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-1bedd141-71eb-49ef-9689-81230f371aec
  • Matyka, M., Kuś, J. (2011). Yielding and biometric characteristics of selected miscanthus genotypes. Problemy Inżynierii Rolniczej, 19(2), 157-163.
  • Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673-686. https://doi.org/10.1016/j.biortech.2004.06.025
  • Muzakhar, K. (2019). A Consortium of Three Enzymes: Xylanase, Arabinofuranosidase, and Cellulase from Aspergillus sp. which liquefied Coffee Pulp Wastes. IOP Conference Series: Materials Science and Engineering, 546(2), 022013. IOP Publishing. Retrieved from https://iopscience.iop.org/article/10.1088/1757-899X/546/2/022013/meta
  • Nowacki, W. (2007). Przyrodnicze i ekonomiczne uwarunkowania wykorzystania krajowej bazy surowcowej do produkcji bioetanolu. Environmental and Economic Conditions of Building National Row Material Base for Bioethanol Production, 9(1), 338-342.
  • Öhgren, K., Bura, R., Saddler, J., Zacchi, G. (2007). Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresource Technology, 98(13), 2503-2510. https://doi.org/10.1016/j.biortech.2006.09.003
  • Scheller, H.V., Ulvskov, P. (2010). Hemicelluloses. Annual Review of Plant Biology, 61, 263-289. https://doi.org/10.1146/annurev-arplant-042809-112315
  • Studer, M.H., DeMartini, J.D., Davis, M.F., Sykes, R.W., Davison, B., Keller, M., … Wyman, C.E. (2011). Lignin content in natural Populus variants affects sugar release. Proceedings of the National Academy of Sciences, 108(15), 6300-6305. https://doi.org/10.1073/pnas.1009252108
  • Swiatek, M., Lewandowska, M., Bednarski, W. (2011). Importance of selecting lignocellulosic substrate pretreatment method with regard to bioethanol production efficiency. Postępy Nauk Rolniczych, 63(1). Retrieved from http://agro.icm.edu.pl/agro/element/bwmeta1.element.dl-catalog-61141ed1-c499-4f74-b111-82d36503ab11
  • Szymanowska, D., Grajek, W. (2009). Fed-batch simultaneous saccharification and ethanol fermentation of native corn starch. Acta Scientiarum Polonorum Technologia Alimentaria, 8(4), 5-16.
  • Tolan, J.S., Foody, B. (1999). Cellulase from Submerged Fermentation. In G. T. Tsao, A. P. Brainard, H. R. Bungay, N. J. Cao, P. Cen, Z. Chen, … L. Xia (Eds.), Recent Progress in Bioconversion of Lignocellulosics (pp. 41-67). Berlin, Heidelberg: Springer. https://doi.org/10.1007/3-540-49194-5_3
  • Wang, T.-H., Liu, T., Wu, Z.-H., Liu, S.-L., Lu, Y., Qu, Y.-B. (2004). Novel cellulase profile of Trichoderma reesei strains constructed by cbh1 gene replacement with eg3 gene expression cassette. Acta Biochimica Et Biophysica Sinica, 36(10), 667-672. https://doi.org/10.1093/abbs/36.10.667
  • Wawro, A., Batog, J., Pieprzyk-Kokocha, D., Skibniewski, Z. (2013). Efektywność obróbki mechanicznej biomasy sorgo i miskanta w produkcji bioetanolu II generacji. Chemik, 67(10). Retrieved from http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-bd8478f6-ff37-4a3a-b1d2-a89c9c2a730d
  • Wilk, M., Krzywonos, M. (2015). Methods for pretreatment of lignocellulose raw materials in second-generation bioethanol production Metody wstępnej obróbki surowców lignocelulozowych w procesie produkcji bioetanolu drugiej generacji. Przemysł Chemiczny, 94(4), 174-178. https://doi.org/10.15199/62.2015.4.20
  • Yoshida, M., Liu, Y., Uchida, S., Kawarada, K., Ukagami, Y., Ichinose, H., … Fukuda, K. (2008). Effects of Cellulose Crystallinity, Hemicellulose, and Lignin on the Enzymatic Hydrolysis of Miscanthus sinensis to Monosaccharides. Bioscience, Biotechnology, and Biochemistry, 72(3), 805-810. https://doi.org/10.1271/bbb.70689
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2ab6fe3-ce2b-4cf9-ba31-ca08df52ec05
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.