
1. Introduction

Spatial databases are nowadays the basic
source of data for cartographic studies, and
the systems for managing these databases
are an important tool for cartographic work.
Quick analysis of very large data sets is parti-
cularly important for cartographers. The study
presented in this paper was meant to analyse
the impact of relational and non-relational
(NoSQL) database models on the performance
of spatial analyses. It was difficult to compare
these two approaches due to their completely
different natures. The precisely defined data
structure of the relational model strongly con-
trasted with the unstructured quality of the
NoSQL model. Another important issue was
the need to define the criteria which would dic-
tate how the study should be performed.

It is widely believed that the first database
was created in the 1960s. The term was first
used in that decade, and Charles Bachman

developed the first system of database mana-
gement at that point. An important breakthrough
came in 1970 when Edgar Frank Codd pre-
sented the concept of a relational database
model in the publication titled A relational model
of data for large shared data banks. Products
based on this solution did not appear on the
market until ten years later, but it became the
standard for many years to come. The theory
of relational databases is built upon the mathe-
matical theory of sets in accordance to which
data is stored in tables of records which have
identical structure and are internally linked by
means of specific relations. Relational databases
are distinguished by their isolation, data con-
sistency, model normalisation and transaction
support (J.D. Ullman, J. Widom 2000). These
advantages determined their popularity. Never-
theless, the technical progress and changing
market needs gradually made their drawbacks
more noticeable. When many users use a rela-
tional database at the same time, it no longer

Polish Cartographical Review
Vol. 51, 2019, no. 4, pp. 167–179

DOI: 10.2478/pcr-2019-0014
MARCIN PIETROŃ Received: 14.10.2019
Warsaw University of Technology Accepted: 25.11.2019
Faculty of Geodesy and Cartography
Department of Cartography
orcid.org/0000-0001-7773-8925
e-m: mjj.pietron@gmail.com

Analysis of performance of selected geospatial analyses
implemented on the basis of relational and NoSQL databases

Abstract. Databases are a basic component of every GIS system and many geoinformation applications.
They also hold a prominent place in the tool kit of any cartographer. Solutions based on the relational model
have been the standard for a long time, but there is a new increasingly popular technological trend – solutions
based on the NoSQL database which have many advantages in the context of processing of large data sets.
This paper compares the performance of selected spatial relational and NoSQL databases executing queries
with selected spatial operators. It has been hypothesised that a non-relational solution will prove to be more
effective, which was confirmed by the results of the study. The same spatial data set was loaded into PostGIS
and MongoDB databases, which ensured standardisation of data for comparison purposes. Then, SQL queries
and JavaScript commands were used to perform specific spatial analyses. The parameters necessary to
compare the performance were measured at the same time. The study’s results have revealed which approach
is faster and utilises less computer resources. However, it is difficult to clearly identify which technology is
better because of a number of other factors which have to be considered when choosing the right tool.

Keywords: spatial analyses, spatial data, MongoDB, PostGIS, efficiency

Bereitgestellt von Uniwersytet Warminsko Mazurski | Heruntergeladen 02.03.20 09:05 UTC

168 Marcin Pietroń

works so well, and when many applications
have to be serviced, the database becomes
very complex. With very large amounts of data,
the lack of possibility of horizontal scaling be-
came an issue. It should also be noted that
this approach used simple data formats, often
different from those used by applications. This
hindered the collection and processing of i.a. spa-
tial data. In many scenarios, the relational model
proved to be insufficient, but a way of storing
a huge amount of unstructured data had to be
found. Many IT specialists have tried to adapt
old technologies to new challenges, but new
approaches have also been developed. On
11 June 2009, in San Francisco, databases
based on non-relational models were first pre-
sented during a “No SQL Meetup” conference.
Since then, NoSQL databases have been
steadily gaining popularity. The widespread
use of non-relational models was determined
by their many advantages, such as theoretically
unlimited scalability of memory storage, a gua-
ranteed system response to any request, as well
as partition tolerance (M. Fowler, P.J. Sadalage
2015). In June 2019, db-engines.com reported
that the top ten most popular databases included
four NoSQL solutions. MongoDB, the most po-
pular of them, took the fifth place on the list.
This shows that non-relational databases are
not merely a curiosity in the IT industry, but an
important and functional solution (M. Wyszo-
mirski 2018).

The differences between relational and non-
-relational technologies in the context of spa-
tial databases have already been researched.
S. Agarwal and K.S. Rajan (2017) from the In-
ternational Institute of Information Technology
in Hyderabad compared the speed with which
MongoDB and PostGIS systems performed
a specific task. However, they limited them-
selves only to finding a specific type of restau-
rant in a given area. Elena Baralis, Paolo Garza
and Andrea Dalla Valle (2017) from the Poly-
technic University of Turin focused on both quali-
tative and performance differences between
Azure SQL Database and Azure DocumentDB.
Dany Laksano (2018) studied the loading time
of spatial data stored in the MongoDB and
PostGIS databases performed with a NodeJS
Fullstack web application. The same database
management systems were used by Michał Lupa
and Adam Piórkowski (2019) who focused on
analysing the dependence of the query execu-

tion time on the number of objects in the set. In
this paper, the above-mentioned considera-
tions were expanded by using larger data sets
and more diverse spatial analyses. They also
took into consideration the issue of consump-
tion of the CPU processing power during the
query execution.

2. Aim and concept of the study, and its
research method

Spatial analyses are operations aimed at
extracting new information from data which
had spatial references (J. Adamczyk, A. Ko-
nieczny 2010). They have many applications
and are crucial for the work of most cartogra-
phers and geographical information systems
specialists. Spatial data must be stored in a se-
cure manner that provides adequate access.
GIS software makes it possible to create, mo-
dify and analyse data stored in databases, and
to generate appropriate geovisualizations. The
most popular applications of this type support
solutions based on the relational model. How-
ever, the amount of available spatial data is
constantly increasing, and new technologies’
capabilities of analysing said data are also
growing. Because of this, NoSQL databases
are employed with an increasingly frequency.
They have almost unlimited scalability, are
usually made available under open source li-
censes, and in the case of aggregate-oriented
ones, provide faster and easier access to data.

Non-relational databases have evolved in
response to the changing needs. Very often,
they were developed on the basis of systems
which themselves failed to succeed (G. Harri-
son 2019). This means that the differences
between a given NoSQL database and a rela-
tional database are often extremely large, de-
spite the fact that they meet the same or
similar goals. Is it possible to say which solu-
tion is better? This question is certainly not the
best-formulated one, because there are signi-
ficant differences in quality even among various
relational databases. The question should be
asked in a more specific way – Is X solution
more efficient than Y solution? The answer is
extremely important. Higher level of perfor-
mance efficiency, and thus the ability to com-
plete the same task quicker, can be the key to
greater profit. However, there is another issue
which has to be taken into account in this context.

Bereitgestellt von Uniwersytet Warminsko Mazurski | Heruntergeladen 02.03.20 09:05 UTC

169Analysis of performance of selected geospatial analyses implemented on the basis of relational...

Some performance benefits will become irrele-
vant if a given operation can be carried out
faster, but at the same time consumes such
enormous amounts of computing power that
weaker equipment would not be able to satisfy
such demands.

The third important aspect to consider when
comparing the two database technologies is
the choice of source data. A proper comparison
requires all operations to be carried out on a basis
of a single data set. Fulfilling this condition is
not easy. Structures in relational and non-rela-
tional databases differ significantly from one
another. Considering the above, it was decided
that the study would be done using a NoSQL
technology which allowed for storing resources
in a way that was most similar to the method
employed in a relational model. The data set
was transferred by means of an appropriate
algorithm from one storage to another. The re-
versibility of this process was ensured, which
in turn guaranteed that there would be an algo-
rithmic relationship between the two sets of
data.

3. Preparation of data and computer
equipment

A part of the vector Database of Topographic
Objects (BDOT10k), depicting the area within
the administrative boundaries of the city of
Warsaw, was chosen as a set of data for the
spatial analyses. The content and the level of
detail of BDOT10k correspond to those of
1:10,000 topographic maps. The database’s
content consists of topographic objects with
spatial references, descriptive characteristics,
cartographic codes, and metadata. This referen-
tial database was implemented in relational-
-model-based solutions because of its conceptual
model. The creators of BDOT10k have adapted
it to the standards valid for the field of geogra-
phical information. In practice, this meant re-
strictions and the need to use specific solutions
in the process of transformation into a relational
model. The data for the Database of Topogra-
phic Objects were sourced from the registers
kept by state authorities and institutions, as
well as the results of field inspections (D. Gotlib
2013).

The BDOT10k data for Warsaw (test area)
included 84 classes saved in the XML docu-
ment format. The total size of the set is about

1.33 GB. It should be noted, however, that
because some individual files had no geometry
and some were not supported by the GIS ap-
plication, the study was ultimately based on
71 classes. Indeed, the amount of data was
very small. Even relational bases are able to
handle much larger volumes. Another special
class of objects was created in order to further
increase the scale of the analysed resource.
One million points were randomly generated
within the smallest rectangle limiting the admini-
strative boundaries of the capital city of Warsaw
in the QGIS software, with the help of the “Ran-
dom points in range” function. The so-created
class was the most numerous of all the classes
used for the tests (it had twice as many objects
as all other classes together). This type of data
is usually obtained in the course of modelling
of a particular phenomenon, but they were not
assigned any special significance for the pur-
poses of the study.

The limits of the potential of the relational
database and the scale of its non-relational
competitor have not been checked due to hard-
ware limitations and the fact that it was impos-
sible to use distributed architecture. However,
the obtained sample is sufficient to meet the
objectives of the study. The results will allow to
formulate relevant conclusions using sufficiently
accurate measurement tools.

All operations were performed on a hardware
set consisting of: a quad-core Intel Core i5-7600K
processor with a base frequency of 3.8 GHz,
two DDR4 Ballistix Sport RAM chips, 8 GB in
total, a SSD ADATA SU800 120 GB drive and
a HDD Toshiba HDWD110 1 TB drive. 64-bit Win-
dows 10 (education version) was the operating
system on which the software was installed
and the tests were conducted.

4. Software configuration and data import

Many programmes were used to carry out
the study for this article. They are presented in
table 1.

QGIS and scripts created using Python were
the key tools in the process of importing data
into PostGIS and MongoDB (fig. 1). The nature
of the imported data did not generate the need
to create relationships between classes. The data
loaded into QGIS consists of tables resulting
from combining many inheriting classes. Each
of them represented a completely different type

Bereitgestellt von Uniwersytet Warminsko Mazurski | Heruntergeladen 02.03.20 09:05 UTC

170 Marcin Pietroń

of topographic objects, therefore there were
no relationships between them that would have
to be modelled.

One of the objectives of this article was to
ensure that the process of moving data from
a relational database to a non-relational one
was reversible. This condition has been met,
because it is technically very easy to download
a JSON document from MongoDB and import
it into PostGIS.

5. Process of performance testing

5.1. Selection of spatial operators
and designing spatial queries

Spatial analyses performed directly in DBMS
were carried out by SQL queries or lines of Java-
Script code. Spatial operators were crucial in
this context, as all spatial queries were based
on them, because they determined how the
user wanted to process the data. Both PostGIS
and MongoDB have allowed for the use of im-
plemented operators. Unfortunately, the sets

of clauses for these systems were diametrically
opposed. PostGIS had dozens of operators
which returned spatial relationships, allowed
for taking measurements, constructing geo-
metric objects, managing geometry attributes
and carrying out many more actions (PostGIS
Development Group, August 2019). MongoDB
contained only a few operators, the most impor-
tant of which were $geoIntersects, $geoWithin,
$geoNear $near and $nearSphere. The last
two are very similar, so the small differences
between them were not considered in the course
of this study. Operators such as $minDistance,
$maxDistance or $geometry were very impor-
tant for building query syntax and defining its
geometric elements (MongoDB Inc., August
2019a).

The need to achieve comparability of analyses
carried out in the two systems has limited the
number of spatial operators which could be
used in the study.

The designed queries were repeated for four
object classes (tab. 2) and three administrative
units (tab. 3) in order to analyse how the amount
of data that the system must search and the

Tab. 1. Software used in research

No. Software Version Description

1. PostgeSQL
with PostGIS
extension

PostGIS – 2.5.2.
PostgreSQL – 11.2.

PostgreSQL is an object-relational database management system.
He uses the SQL language. PostGIS is an extension of PostgreSQL
that develops it to a spatial database. It supports geographic features
and queries based on their location (PostGIS Development Group,
August 2019).

2. pgAdmin 4.2. The pgAdmin software is the PostgreSQL database administration
platform. This is a very functional graphical interface (pgAdmin
Development Team, August 2019).

3. MongoDB 4.0.6. MongoDB is an aggregation oriented JSON document database.
It is based on JavaScript as the query language. This allows to
create shorter and more simple queries than in SQL (MongoDB Inc.,
September 2019).

4. QGIS 3.8. Noosa QGIS is a functional Geographic Information System. The support
for the tools of creating plugins and scripts is very important
because it additionally expand the capabilities of this software
(OSGeo, August 2019).

5. Python 3.7. Python is a high-level, interpreted, object-oriented and dynamically
typed programming language. (Python Software Foundation, August
2019). It is imortant that two APIs (Application Programming Inter-
face) were used in the research: PyMongo and PyQGIS.

Bereitgestellt von Uniwersytet Warminsko Mazurski | Heruntergeladen 02.03.20 09:05 UTC

171Analysis of performance of selected geospatial analyses implemented on the basis of relational...

size of the search area impact the performance
efficiency.

Both classes and search areas were selected
in such a way as to ensure that the differences
concerning the number of objects and areas
were significant and could illustrate how the in-

crease in these parameters results in increased
difficulties in execution of queries. In the case
of the $near or $geoNear operators, the “near”
range was 1 km or 10 km. The changing frag-
ments are marked in the presented examples
(scripts 1 and 2) – red indicates class, and green

Tab. 2. Selected feature classes

Feature class Count of objects Geometry type

Random generated points 1,000,000 point

bubd_a 149,731 Building – area

oipr_p 64,071 Nature object – point

suln_l 6,728 Overhead line – line

Fig. 1. Block diagram of the process of data import into PostGIS and MongoDB databases

Bereitgestellt von Uniwersytet Warminsko Mazurski | Heruntergeladen 02.03.20 09:05 UTC

172 Marcin Pietroń

– the search area. Orange indicates aliases
which are also subject to change, but depend
directly on the selected table.

The problem of finding all buildings located
within one (scripts 3 and 4) or ten kilometres
from the selected point and arranging them
from the nearest to the furthest was posed in
order to observe the performance efficiency
of queries constructed on the basis of the
$geoNear operator.

Tab. 3. Selected areas of queries

Region Area in km2

Ochota 9,713

Wawer 79,641

Warsaw 516,759

Script 1. A PostGIS database query concerning buildings located within or on the border of the Ochota district

SELECT bu.*

FROM bdot.bubd_a AS bu, bdot.adja_a AS ad

WHERE ST_INTERSECTS(bu.geom, ad.geom) AND ad.nazwa = ‘Ochota’

Script 2. A MongoDB database query concerning buildings located within or on the border of the Ochota district

var ar1 = db.Warsaw.findOne({ name: “ADJA_A”, “features.properties.nazwa”:
“Ochota” })

db.Warsaw.find({ “features.geometry”: { $geoIntersects: { $geometry: ar1.
features[0].geometry } }, name: “BUBD_A” })

Script 3. A PostGIS database query concerning buildings located within 1 km from the selected point, orde-
red by distance

SELECT bu.*

FROM bdot.bubd_a AS bu, (SELECT * FROM bdot.adms_p AS ap WHERE nazwa =
‘Warszawa’) AS p1

WHERE ST_INTERSECTS(bu.geom, ST_BUFFER(p1.geom, 1000))
ORDER BY ST_Distance(bu.geom, p1.geom)

Script 4. A MongoDB database query concerning buildings located within 1 km from the selected point, orde-
red by distance

var ar1 = db.Warsaw.findOne({ name: “ADMS_P”, “features.properties.nazwa”:
“Warszawa” })

db.Warsaw.aggregate([{ $geoNear: { near: ar1.features[0].geometry,
spherical: true, minDistance:0, maxDistance:1000, query: {name: “BUBD_A”},
distanceField: „calcDistance” } }])

Similar analyses were carried out for the
variant in which objects belonging to specific
classes were placed in separate collections of
the MongoDB databse, which required the use
of other queries (script 5).

The next set of tests included searching for
objects in polygons defined directly in the query
(scripts 6 and 7). Only one, most numerous,

class of randomly generated points and three
polygons determined on the basis of vertex
coordinates were used for these analyses.
Pre-defined search areas were diversified on
the basis of the area size in order to analyse
how any increases in range affect performance
efficiency (tab. 4). The data stored in the col-
lection, along with the BDOT10k data, were
used first at this stage.

Bereitgestellt von Uniwersytet Warminsko Mazurski | Heruntergeladen 02.03.20 09:05 UTC

173Analysis of performance of selected geospatial analyses implemented on the basis of relational...

Queries concerning data stored in a separate
collection were also designed. The differences
in syntax were very small. The data selection
condition after the “name” attribute was not in-
cluded, because queries were run on collec-
tions containing only one class (script 8).

The above-presented examples apply only
to the $geoIntersects and ST_INTERSECTS
operators. However, more operators were used
to carry out more diverse spatial analyses
(tab. 5).

The final stage of testing consisted in running
queries on all classes at the same time. All ob-
jects in contact with the defined point, located
within the Ochota district, and within 100 metres
from another specified point, were identified.
The properties of a non-relational database
have proved to be very valuable. The ability to

Script 5. A MongoDB database query concerning buildings overlapping with the Ochota district area

var ar1 = db.adjaa.findOne({ “features.properties.nazwa”: “Ochota” })

db.bubda.find({„features.geometry”: { $geoIntersects: { $geometry: ar1.
features[0].geometry }}})

Script 6. A PostGIS database query concerning points located within or on the border of the pre-defined
polygon

SELECT ran.*
from bdot.rndpoints as ran, (select ST_Transform(ST_Polygon(ST_GeomFromText
(‘LINESTRING(20.857016 52.331373, 21.113418 52.343302, 21.271051 52.154767,
20.894588 52.124527, 20.857016 52.331373)’), 4326),2180) as p1) as g1
where ST_INTERSECTS(ran.geom, p1)

Script 7. A MongoDB database query concerning points located within or on the border of the pre-defined
polygon

db.Warsaw.find({“features.geometry”: { $geoIntersects: { $geometry: { type:
“Polygon”, coordinates: [[[20.857016, 52.331373], [21.113418, 52.343302],
[21.271051, 52.154767], [20.894588, 52.124527], [20.857016, 52.331373]]] }
}}, name: “random_points”})

Script 8. A MongoDB database query concerning points located within or on the border of the pre-defined
polygon

db.rndpoints.find({“features.geometry”: { $geoIntersects: { $geometry:
{ type: “Polygon”, coordinates: [[[20.857016, 52.331373], [21.113418,
52.343302], [21.271051, 52.154767], [20.894588, 52.124527], [20.857016,
52.331373]]] } }}})

Tab. 4. Predefined polygons and their areas

Area in km²

Small polygon 45,642

Medium polygon 179,700

Large polygon 491,216

Tab. 5. Operators used in the research

Operator
in MongoDB Operator in PostGIS

$geoIntersects ST_INTERSECTS

$geoWithin ST_WITHIN

$geoNear ST_BUFFER+ST_INTESECTS
+ST_DISTANCE

$near ST_BUFFER+ST_INTESECTS

Bereitgestellt von Uniwersytet Warminsko Mazurski | Heruntergeladen 02.03.20 09:05 UTC

174 Marcin Pietroń

store all data in one collection made it possible
to avoid a very long query syntax.

5.2. Method of measuring performance
parameters

The assumptions of this paper identified two
basic parameters which would allow for deter-
mining performance efficiency. Quick task per-
formance is a key issue for most users, so the
study focused on the query execution time. It
was measured on the basis of functionalities
implemented directly in DBMS. The pgAdmin
application displayed the execution time at the
end of the query. In the case of MongoDB, this
information was saved in server logs, i.e. files
which recorded subsequent activities.

Windows 10 task manager was used as a CPU
usage monitoring tool. All unnecessary pro-
cesses were turned off during the execution of
the query in order to achieve the maximum po-
ssible measurement accuracy. The query was
run several times to make sure that other pro-
grammes were not adversely affecting the
results. Values of this parameter were recorded
as a percentage of total CPU usage on all cores.

The default DBMS MongoDB settings were
meant to record only those results which
exceeded one second. The queries conducted
for this study ended much earlier. The time
limit threshold had to therefore be lowered to

one millisecond (MongoDB Inc., August 2019b).
Measuring the CPU processing power con-

sumption was a big problem. It was impossible
to find a tool to register this type of load gene-
rated by database queries. Most of potential
solutions were designed for Linux systems or
were not released under open-source licenses.
Only few free options allowed to measure the
CPU consumption caused by queries made
only in the PostGIS system. Ultimately, relatively
imprecise task manager of the Windows ope-
rating system was used. The fact that the con-
sumption of processing power differed a lot
depending on the amount of data and DBMS
made it possible to notice discrepancies in the
operation of selected systems. However, one
should remember that this solution provides
results burdened with a sizeable error.

6. Results

Visualizations presented below concern only
the queries containing the operator searching
for the common part of objects, i.e. $geoInter-
sects or ST_INTERSECTS, and carried out for
the data contained in one collection of the
MongoDB database, due to the very large
number of sets and charts resulting from nu-
merous analyses.

The results revealed that the MongoDB
database had a clear advantage in terms of

Fig. 2. The query execution time in dependence of the size of the search area for the Intersects operator

Bereitgestellt von Uniwersytet Warminsko Mazurski | Heruntergeladen 02.03.20 09:05 UTC

175Analysis of performance of selected geospatial analyses implemented on the basis of relational...

performance efficiency. As the search area in-
creased, so did the query execution time, which
was expected. The algorithm had to analyse
a larger area and find more objects (fig. 2).
It should be noted that the time difference be-
tween the analysis of data stored in a relatio-
nal and a non-relational database was very
large. A notable exception was the “suln_l”
overhead line class, because the query run on

the MongoDB database was executed faster
for the Wawer district than for Ochota.

Resource utilisation had different distribution
than time (fig. 3). In the case of the PostGIS
system, an increase of the search area was
linked to an increasing demand for CPU power.
The differences were very significant for queries
concerning data with location in Ochota and
Wawer. However, the trend stabilised later.

Fig. 3. The CPU usage of query in dependence of the size of the search area for the Intersects operator

Fig. 4. The query execution time in dependence of the size of the search area for the Intersects operator

Bereitgestellt von Uniwersytet Warminsko Mazurski | Heruntergeladen 02.03.20 09:05 UTC

176 Marcin Pietroń

The exception were the results of the queries
concerning the class of “oior_p” natural objects,
where the increase was similar to a linear
function. The MongoDB system outclassed its
competitor in this aspect as well. There was
even a decrease in the demand for processing
power for the data queries within the Wawer
district.

In the case of the within operator, the distri-
bution of time and consumption of the CPU
processing power, reflecting the change in the
size of the search area, were similar to those

presented above. Using the “near” operator
($geoNear) radically changed the results, but
the MongoDB database still retained its over-
whelming advantage in every aspect. Queries
run on a database storing data in separate col-
lections were even more efficient.

Spatial analyses taking into account the de-
finition of the search area in the query syntax
were made only with the help of “intersect” and
“within” operators. It was not possible to include
the $geoNear clause in the context of this part
of the study due to its different mode of opera-

Tab. 6. Summary of CPU percentage usage and queries execution time for all classes

OPERATOR
POSTGIS MONGO

Time
[msec] RESULT CPU usage Time

[msec] Result CPU usage

$geoIntersects
/ST_INTERSECT 217 10 15% 32 12 4%

$geoWithin
/ST_WITHIN 2,142 24,085 64% 118 24,085 3%

$near /ST_BUFFER
+ST_INTESECTS 227 82 14% 62 139 4%

Fig. 5. The CPU usage of query in dependence of the size of the search area for the Intersects operator

Bereitgestellt von Uniwersytet Warminsko Mazurski | Heruntergeladen 02.03.20 09:05 UTC

177Analysis of performance of selected geospatial analyses implemented on the basis of relational...

tion. The tests included queries concerning
one, most numerous class, which in the case
of the MongoDB system was stored in a sepa-
rate collection.

The results of measuring the time and the
consumption of the processing power were very
clear (figs. 4 and 5). Better performance of the
MongoDB system was clearly noticeable. The
time needed to execute queries increased with
the increase in the area of pre-defined poly-
gons. This increase was definitely faster in the
case of the PostGIS system. A similar situation
occurred for the CPU processing power con-
sumption parameter. Once again, the results
obtained for the within operator were very si-
milar, and querying the database for data con-
tained in separate collections further increased
the performance efficiency.

The results of the query performance tests
for all database classes were very clear once
again. The MongoDB system performed its
operations faster, and also consumed less CPU
resources (tab. 6). It is worth noting that the
queries concerning near locations provided
completely different results, which may con-
firm either differences in functioning of these
operators, or differences in the way the location
data was saved. A similar situation occurred in
the case of the “intersects” clause.

Building a query in PostGIS that could finding
objects from each class required a very long
code. A specific set of operations had to be
performed for each class and, afterwards, the
results had to be aggregated using the “UNION”
clause. It was necessary to ensure the consist-
ency of the result table, which meant a restric-
tive selection of attributes, leaving only “id”.
This problem did not affect the MongoDB sys-
tem. Storage of all data in one collection allowed
for writing a very short query. This is undoubtedly
an advantage of aggregate-oriented databases.

7. Problems, difficulties and further
research development areas

The first difficulty was related to storing spa-
tial data in the MongoDB database. QGIS soft-
ware provides very good support for the
PostgreSQL system, which made it possible to
avoid major problems during the transfer. Im-
porting data into a non-relational database
was much more difficult. It required mastering

Python programming language, at least at a basic
level, as well as learning its libraries and APIs
that allow for such operations. It should be noted
that implementation of the designed scripts
was very time-consuming, and the import of all
data could take up to several hours.

Maintaining a uniform reference system also
proved to be a challenge. The input data con-
tained a reference to the national geodetic co-
ordinate system (PUWG) “1992”. They have
been imported in the unchanged configuration
into the PostGIS database. The MongoDB sys-
tem had some limitations in this respect. It was
necessary to set up an index for the attribute
containing information about the geometry.
The default “2dsphere” was selected in this
case, which meant that the queries returned
an error if the data was in a different system
than WGS-1984. It was therefore necessary to
transform the coordinates.

This paper focuses on performance of queries
run on databases limited to one local server.
Modern commercial systems use solutions
based on distributed architecture. Technical
limitations prevented performance testing of
this database variant.

MongoDB is not the only non-relational data-
base. Similarly, PostgrSQL has many relational
competitors. It would be worthwhile to expand
the research to compare the possibilities offered
by other non-relational technologies, e.g. Cas-
sandra which is a column family type database,
based on the key-value model, such as Redis
or Neo4j, a graph database. In turn, SQL Server,
Oracle, MySQL and SQLite are some of exam-
ples of other popular relational solutions.

Only minimal attention was paid to the aggre-
gative nature of the MongoDB database in the
course of the study. This potential was used in
the context of queries concerning data from all
classes at once, but its full scope is much larger.
Future research could take this aspect into
consideration. In particular, it is worth considering
the possibilities of storing complex spatial data
describing very complicated phenomena.

Definition of spatial operators is a very im-
portant issue that must be taken into account
in the possible further course of research. In
the case of the PostGIS system, the results
differed from those obtained in MongoDB. The
disparity was probably caused by different
approaches to spatial relations checked by
operators. Different level of precision in saving

Bereitgestellt von Uniwersytet Warminsko Mazurski | Heruntergeladen 02.03.20 09:05 UTC

178 Marcin Pietroń

coordinates in databases could be another con-
tributing factor. It was a crucial issue because
it not only determined the possibility of com-
paring the performance of various queries, but
also significantly affects users work.

8. Summary and conclusions

Many of the issues presented in the study
are very important for modern cartographers
and GIS analysts. The amount of available
spatial data is growing extremely quickly and
creates the need to use modern technologies
for processing data in such large quantities.
Although the relational model dominates in GIS,
non-relational databases are gradually becoming
more common and gaining popularity.

The obtained results clearly indicated that
the analyses carried out in the MongoDB sys-
tem were performed with greater efficiency,
which confirmed the hypothesis of the study.
MongoDB not only performed queries much
faster, but also consumed less of CPU pro-
cessing power. The fact that it was an aggre-
gate-orientated database was also important
and allowed for construction of much simpler,
more concise queries. It had also a significant
impact on performance itself. The query of a pro-
perly aggregated data set could be executed
up to several dozen times quicker than of an
analogous query in a relational database.

It should be emphasised that PostGIS allows
for the use of an incomparably larger number
of spatial operators. This is clearly crucial in
the context of GIS analyses. In practice, most
spatial data processing operations are carried
out in dedicated software, such as QGIS. There-
fore, the number of operators that can be used
in a given DBMS is less important. As a rule,
GIS software supports relational databases for
much longer and in a much better way, and
non-relational solutions are usually not sup-
ported not all.

Another significant limitation of the MongoDB
system are its restrictive requirements for the
coordinate system. This is related to the issue
of spatial indexes. The index selected for this

study required the data to be in the WGS-1984
system. PostGIS does not impose such re-
strictions.

Visualization of analysis results is particularly
important in the context of GIS and cartography.
The pgAdmin graphical interface allowed for
the display of spatial query results. However,
the so-obtained presentations were of poor
quality and could not be edited, as they were
meant to provide only very simplified informa-
tion. However, the MongoDB database mana-
gement system did not allow for creating even
the simplest visualizations. It should be noted
that no graphical interface was used in this case.
All operations were carried out in the system
console.

The non-relational MongoDB database is de-
finitely more efficient than the relational PostGIS.
This does not mean, however, that this solution
is better, especially in the context of spatial data
analysis, because currently support for pro-
cessing of location data is poor. However, this
technology can continue to develop. The PostGIS
extension provides many more possibilities in
the fields of reference systems, spatial operators
and cooperation with leading GIS applications.
Each of the examined database management
systems can store and process location data.
They have different advantages, but also signi-
ficant drawbacks. When choosing a specific
technology, one should carefully analyse the
needs of a given project and specificity of the
tasks involved. Relational databases are the
current standard and in some areas of GIS
they will certainly remain the default option.
However, non-relational technologies are an
attractive alternative, and in the case of very
large volumes of complex, unstructured collec-
tions, they may even be a necessity.

Acknowledgements

I would like to offer my sincere thanks to my
research supervisor, Professor of the Warsaw
University of Technology Robert Olszewski,
PhD Eng., Miłosz Gnat, MSc Eng., and Michał
Wyszomirski, PhD Eng., for consultations and
substantive assistance.

Bereitgestellt von Uniwersytet Warminsko Mazurski | Heruntergeladen 02.03.20 09:05 UTC

179Analysis of performance of selected geospatial analyses implemented on the basis of relational...

Adamczyk J., Konieczny A., 2010, Rodzaje analiz
przestrzennych. In: K. Okła, Geomatyka w Lasach
Państwowych – Część I. Podstawy. Warszawa:
CILP, 214 pp.

Agarwal S., Rajan K.S., 2017, Analyzing the perfor-
mance of NoSQL vs. SQLdatabases for spatial
and aggregate queries. “Free and Open Source
Software for Geospatial (FOSS4G) Conference
Proceedings” Vol. 17, Article 4, Boston.

Baralis E., Garza P., Valle A.D., 2017, SQL versus
NoSQL Databases for Geospatial Applications.
In: IEEE International Conference on Big Data,
Boston, IEEE, pp. 3388–3397.

Fowler M., Sadalage P.J., 2015, NoSQL. Kompedium
wiedzy. Polish transl. J. Hubisz, Gliwice: Helion,
pp. 19−36.

Gotlib D., 2013, Ogólna koncepcja, cel budowy i zakres
informacyjny BDOT10k i BDOO. In: R. Olszewski,
D. Gotlib (eds.), Rola bazy danych obiektów topo-
graficznych w tworzeniu infrastruktury informacji
przestrzennej w Polsce. Warszawa: GUGiK,
pp. 51−57.

Harrison G., 2019, NoSQL, NewSQL i BigData. Po-
lish transl. P. Pilch, Gliwice: Helion, pp. 29−32,
58−59, 70−77.

Laksano D., 2018, Testing spatial data deliverance
in SQL and NoSQL database using NodeJS Full-
stack Web App. 4th International Conference on
Science and Technology (ICST), Yogyakarta, IEEE.

Lupa M., Piórkowski A., 2019, The comparison of
processing efficiency of spatial data for PostGIS
and MongoDB Databases. In: S. Kozielski et al.,
Beyond databases, architectures and structures.
Paving the road to smart data processing and analysis.
15th International Conference, BDAS 2019, Ustroń:
Springer International Publishing, pp. 291–302.

Ullman J.D., Widom J., 2000, Podstawowy wykład
z systemów baz danych. Polish transl. M. Jurkie-
wicz, Warszawa: Wydawnictwo Naukowo-Tech-
niczne, pp. 19−33, 118−122, 168−197.

Wyszomirski M., 2018, Przegląd możliwości zastoso-
wania wybranych baz danych NoSQL do zarządza-
nia danymi przestrzennymi. “Roczniki Geomatyki”
T. 16, z. 1(80), pp. 55−69.

Internet sources

PostGIS Development Group, PostGIS 2.5.4.dev
Manual. In: PostGIS Documentation [online], https://
postgis.net/docs/manual-2.5/ (access August 2019).

pgAdmin Development Team, Features. In: pgAdmin
homepage [online], https://www.pgadmin.org/fe-
atures/ (access August 2019).

MongoDB Inc., GeoJSON Objects. In: MongoDB
Documentation [online], https://docs.mongodb.com/
manual/reference/geojson/ (access September 2019).

OSGeo, QGIS – wiodący otwartoźródłowy system
GIS. In: Official QGIS project website, https://qgis.
org/pl/site/about/index.html (access August 2019).

Python Software Foundation, General Python FAQ,
2010. In: Python Documentation, https://docs.py-
thon.org/3/faq/general.html (access August 2019).

MongoDB Inc., Geospatial Queries. In: MongoDB
Documentation [online], https://docs.mongodb.
com/manual/geospatial-queries/ (access August
2019a).

PostGIS Development Group, PostGIS Reference.
In: PostGIS Documentation [online], https://postgis.
net/docs/reference.html (access August 2019).

MongoDB Inc., Database Profiler. In: MongoDB Do-
cumentation [online], https://docs.mongodb.com/
manual/tutorial/manage-the-database-profiler/
(access August 2019b).

Literature

Bereitgestellt von Uniwersytet Warminsko Mazurski | Heruntergeladen 02.03.20 09:05 UTC

https://postgis.net/docs/manual-2.5/
https://postgis.net/docs/manual-2.5/
https://www.pgadmin.org/features/
https://www.pgadmin.org/features/
https://docs.mongodb.com/manual/reference/geojson/
https://docs.mongodb.com/manual/reference/geojson/
https://qgis.org/pl/site/about/index.html
https://qgis.org/pl/site/about/index.html
https://docs.python.org/3/faq/general.html
https://docs.python.org/3/faq/general.html
https://docs.mongodb.com/manual/geospatial-queries/
https://docs.mongodb.com/manual/geospatial-queries/
https://postgis.net/docs/reference.html
https://postgis.net/docs/reference.html
https://docs.mongodb.com/manual/tutorial/manage-the-database-			profiler/
https://docs.mongodb.com/manual/tutorial/manage-the-database-			profiler/

	_Hlk18833327
	_Hlk18832960
	m_3872349974764844709__Hlk18832960
	_Hlk18875443
	_Hlk18875517
	_Hlk28336679

