PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanocomposites Based on Polyamide and Montmorillonite Obtained from a Solution

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work deals with the development of a method for obtaining polyamide and montmorillonite based nanocomposite, which was modified with polyvinylpyrrolidone by mixing in a formic acid solution. The structure and thermophysical properties of the obtained nanocomposites were investigated by means of the X-ray, differentialthermal, thermogravimetric and IR spectroscopic analyses. It was found that nanomodified polycaproamide has a higher crystallinity and higher thermal stability than the original PA-6, and is characterized by considerably higher melt fluidity. The presence of polyvinylpyrrolidone and exfoliated montmorillonite in the nanocomposite structure was confirmed experimentally.
Twórcy
  • Lviv Polytechnic National University, Department of Chemical Technology and Plastics Processing, Bandera 12 St., 79013 Lviv, Ukraine
  • Lviv Polytechnic National University, Department of Chemical Technology and Plastics Processing, Bandera 12 St., 79013 Lviv, Ukraine
  • Lviv Polytechnic National University, Department of Chemical Technology and Plastics Processing, Bandera 12 St., 79013 Lviv, Ukraine
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Polymer Processing, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Technical University of Košice, Faculty of Mechanical Engineering, Department of Mechanical Engineering Technologies and Materials, Masiarska 74 St., 04001 Košice, Slovakia
  • Lviv Polytechnic National University, Department of Chemical Technology and Plastics Processing, Bandera 12 St., 79013 Lviv, Ukraine
Bibliografia
  • 1. Alexander M, Dubois P. Polymer nanocomposites: Synthesis, characterization, and modeling. Materials Science and Engineering, 2000, 28, 1–63.
  • 2. Aranda P, Mosqueda Y, Pérez-Cappe E et al. Electrical characterization of poly(ethylene oxide)-clay nanocomposites prepared by microwave irradiation. Journal of Polymer Science Part B: Polymer Physics, 2003, 41(24), 3249–3263.
  • 3. Elbokl T and Detellier C. Aluminosilicate nanohybrid materials. Intercalation of polystyrene in kaolinite. Journal of Physics and Chemistry of Solids, 2006, 67(5-6), 950–955.
  • 4. Gaaz T, Sulong A, Akhtar M at al. Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites. Molecules, 2015, 20(12), 22833–22847.
  • 5. Krasinskyi V., Gajdos I., Suberlyak O., Antoniuk V., Jachowicz T. Study of the structure and thermal characteristics of nanocomposites based on polyvinyl alcohol and intercalated montmorillonite. Journal of Thermoplastic Composite Materials. – First Published October 8, 2019.
  • 6. Krasinskyi V., Suberlyak O., Antoniuk V., Jachowicz T. Rheological Properties of Compositions Based on Modified Polyvinyl Alcohol. Advances in Science and Technology Research Journal, 2017, 11(3), 304–309.
  • 7. Krasinskyi V., Suberlyak O., Dulebová L., Antoniuk V. Nanocomposites on the basis of thermoplastics and montmorillonite modified by polyvinylpyrrolidone. Key Engineering Materials, 2017, 756, 3–10.
  • 8. Krasinskyi V., Kochubei V., Klym Y., Suberlyak O. Thermogravimetric research into composites based on the mixtures of polypropylene and modified polyamide. Eastern European Journal of Enterprise Technologies, 2017, 4 (12), 44–50.
  • 9. Krasinskyi V, Suberlyak O, Kochubei V et al. Effect of small additives of polyamide modified by polyvinylpyrrolidone and montmorillonite on polypropylene technological properties and heat resistance. Advances in Science and Technology Research Journal, 2018, 12(2), 83–88.
  • 10. Krasinskyi V, Suberlyak O, Zemke V et al. The Role of Polyvinylpyrrolidone in the Formation of Nanocomposites Based on acompatible Polycaproamide and Polypropylene. Chemistry & Chemical Technology, 2019, 13(1), 59–63.
  • 11. Krasinskyi V., Suberlyak O., Chekailo M., Dulebova L. Investigation of structure of nanocomposites on the basis of mixture of polypropylene and modified polyamide with using scanning electronic microscopy. Chemistry, Technology and Application of Substances, 2019, 2(1), 138-144.
  • 12. Kryszewski M. Nanointercalates – novel class of materials with promising properties. Synthetic Metals, 2000, 109, 47–54.
  • 13. Mel’nikova O.A., Samkova I.A., Mel’nikov M.YU., Petrov A.YU., Yel’tsov O.S. IK-spektroskopicheskoye izucheniye khimicheskoy struktury polimernykh kompleksov lekarstvennykh veshchestv na osnove polivinilpirrolidona. Uspekhi sovremennogo yestestvoznaniya, 2016, 8, 42-49.
  • 14. Moore D. M., Reynolds Jr. R. C. X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford New York: Oxford University Press, 1997, 376.
  • 15. Pinnavaia T and Beall G. Polymer-Clay-Nanocomposites. 1th ed. New York: Wiley, 2000, 370.
  • 16. Shokrieh M, Esmkhani M and Taheri-Behrooz F. A novel model to predict the fatigue life of thermoplastic nanocomposites. Journal of Thermoplastic Composite Materials 2015, 28(11), 1496–1506.
  • 17.Suberlyak O, Krasins’kyi V, Shapoval I et al. Influence of the mechanism and parameters of hardening of modified novolac phenol-formaldehyde resins on the physicomechanical properties of the composite. Materials Science, 2011, 46(5), 669–678.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2a6a83d-71b7-4568-8265-5ca7c735bb75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.