PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption behaviour of polar solvent and water vapours on Sorbonorit B4 activated carbon

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the affinity of the heterogeneous Sorbonorit B4 (SB4) activated carbon toward methyl ethyl ketone (MEK), isopropyl alcohol (IPA), n-propyl alcohol (NPA) and isobutyl alcohol (IBA), and water vapours was examined. Adsorption equilibrium measurements demonstrate a higher adsorption capacity of water vapour than organic compounds at relative pressures above 0.4. The adsorption capacities of SB4 at the same vapor pressure followed the order: NPA> IPA> MEK> IBA. The Langmuir, Dubinin-Radushkevich, Dubinin-Astakhov, and Toth isotherm models were chosen to describe experimental results. Based on the multi-temperature isotherms, the values of the isosteric heat of adsorption were determined for various adsorbate loading. The results indicate a strong influence of VOC molecule structures and the surface heterogeneity of SB4 on the adsorption efficiency. For IPA-SB4 pair, the maximum temperature rise in a fixed-bed bed in the adsorption process and the energy requirement for regeneration were calculated and experimentally verified.
Rocznik
Strony
28--35
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wz.
Twórcy
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering Szczecin, Poland
Bibliografia
  • 1. Li, X., Zhang, L., Yang, Z., Wang, P., Yan, Y. & Ran, J. (2020). Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: a review. Sep. Purif. Technol., 235, 116213. DOI: 10.1016/j. seppur.2019.116213.
  • 2.Fletcher, A.J., Yüzak, Y. & Thomas, K.M. (2006). Adsorption and desorption kinetics for hydrophilic and hydrophobic vapors on activated carbon. Carbon 44, 989–1004. DOI: 10.1016/j.carbon.2005.10.020.
  • 3. Jia, L., Shi, J., Long, C., Lian, F. & Xing, B. (2020). VOCs adsorption on activated carbon with initial water vapor contents: Adsorption mechanism and modified characteristic curves. Sci. Total Environ. 731, 139184. DOI: 10.1016/j.scitotenv.2020.139184.
  • 4. Delage, F., Pré, P. & Le, Cloirec, P. (1999). Effects of moisture on warming of activated carbon bed during VOC adsorption. J. Environ. Eng. 125, 1160–1168. DOI: 10.1061/(ASCE)0733-9372(1999)125:12(1160).
  • 5. Gabruś, E. & Downarowicz, D. (2016). Anhydrous ethanol recovery from wet air in TSA systems - Equilibrium and column studies. Chem. Eng. J. 288, 321–333. DOI: 321–331 10.1016/j.cej.2015.11.110. S.M.
  • 6. Taqvi, S.M., Appel, W.S. & Le, Van, M.D. (1999). Co-adsorption of organic compounds and water vapor on BPL activated carbon. 4. Methanol, ethanol, propanol, butanol, and modelling. Ind. Eng. Chem. Res. 38, 240–250. DOI: 10.1021/ie980324k.
  • 7. Lashaki, M.J., Fayaz, M., Wang, H., Hashisho, Z., Philips, J.H., Anderson, J.E. & Nichols, M. (2012). Effect of adsorption and regeneration temperature on irreversible adsorption of organic vapors on beaded activated carbon. Environ. Sci. Technol. 46, 4083−4090. DOI: 10.1021/es3000195.
  • 8. Downarowicz, D. (2015). Adsorption characteristics of propan-2-ol vapours on activated carbon Sorbonorit 4 in electrothermal temperature swing adsorption process. Adsorption 21, 87–98. DOI: 10.1021/acs.jced.7b00528.
  • 9. Downarowicz, D., Kowalski, K. & Aleksandrzak, T. (2022). Importance of spectroscopic and static gravimetric studies for exploring adsorption behavior of propan-2-ol vapor in a fixed-bed column. Chem. Eng. Res. Des. 178, 502–513. DOI: 10.1016/j.cherd.2021.12.043.
  • 10. Downarowicz, D. & Ziętarska, K. (2017). Adsorption of propan-1-ol vapour on Sorbonorit 4 activated carbon - equilibrium and dynamic studies. Pol. J. Chem. Tech. 19, 59–64. DOI: 10.1515/pjct-2017-0068.
  • 11. Yang, R.T. (2003). Adsorbents: fundamentals and applications, New Jersey, John Wiley & Sons.
  • 12. Baur, G.B., Beswick, O., Spring, J., Yuranov, I. & Kiwi-Minsker, L. (2015). Activated carbon fibers for efficient VOC removal from diluted streams: The role of surface functionalities. Adsorption 21, 255−264. DOI: 10.1007/s10450-015-9667-7.
  • 13. Bae, J.S. & Do, D.D. (2006). On the equilibrium and dynamic behavior of alcohol vapors in activated carbon. Chem. Eng. Sci. 61, 6468–6477. DOI: 10.1016/j.ces.2006.06.020.
  • 14. Downarowicz, D. & Aleksandrzak, T. (2016). Adsorption of propanol isomer vapors on Sorbonorit B4 activated Carbon: equilibrium and spectroscopic studies. J. Chem. Eng. Data 61, 3650−3658. DOI: 10.1021/acs.jced.6b00583.
  • 15. Nobusawa, S., Kaku, H., Amada, T., Asano, H., i Satoh, K. & Ruike, M. (2013). Calorimetric study and simulation of the adsorption of methanol and propanol onto activated carbon fibers. Colloids Surf. A Physicochem. Eng. Asp. 419, 100–112. DOI: 10.1016/j.colsurfa.2012.11.059.
  • 16. Hung, H.W. & Lin, T.F. (2007). Prediction of the Adsorption Capacity for volatile organic compounds onto activated carbons by the Dubinin-Radushkevich-Langmuir model. J. Air Waste Manage. Assoc. 57, 497−506. DOI: 10.3155/1047-3289.57.4.497.
  • 17. Smallwood, I.M. (2002). Solvent recovery handbook. Osney Mead, Blackwell Science.
  • 18. Downarowicz, D. & Kowalski, K. (2020), Electrothermal regeneration of BPL activated carbon: possibilities for improvement of process efficiency. Chem. Pap. 74, 1945–1956. DOI:10.1007/s11696-019-01042-y.
  • 19. Do, D.D. (1998). Adsorption analysis: equilibria and kinetics. London, Imperial College Press.
  • 20. Wood, G.O. (2001). Affinity coefficients of the Polanyi/Dubinin adsorption isotherm equations. A review with compilations and correlations. Carbon 39, 343–356. DOI: 10.1016/S0008-6223(00)00128-7.
  • 21. Yagnamurthy, S., Rakshit, D., Jain, S., Rocky, K.A., Islam, M.A. & Saha, B.B. (2021). Adsorption of difluoromethane onto activated carbon based composites: Thermophysical properties and adsorption characterization. Int. J. Heat Mass Transf. 171, 121112. DOI: 10.1016/j.ijheatmasstransfer.2021.121112.
  • 22. Erdem-Senatalar, A., Tatller, M. & Sirkecioglu, A. (2000). The relationship of the geometric factor in the Dubinin–Astakhov isotherm equation with the fractal dimension. Colloids Surf. A Physicochem. Eng. Asp. 173, 51–59. DOI: 10.1016/S0927-7757(00)00494-5.
  • 23. Yaws, C.L. (2003). Yaws’ Handbook of thermodynamic and physical properties of chemical compounds. New York, Knovel.
  • 24. Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G. & Sing, K.S.W. (2014). Adsorption by powders and porous solid: principles, methodology and applications. Amsterdam, Elsevier, Academic Press.
  • 25. Rodrıguez-Mirasol, J., Bedia, J. & Cordero, T. (2005). Influence of water vapor on the adsorption of VOCs on lignin-based activated carbons. Sep. Sci. Technol. 40, 3113–3135. DOI: 10.1080/01496390500385277.
  • 26. Andreu, A., Stoeckli, H.F. & Bradley, R.H. (2007). Specific and non-specific interactions on non-porous carbon black surfaces. Carbon 45, 1854−1864. DOI: 10.1016/j.carbon.2007.04.025.
  • 27. Salame, I.I. & Bandosz, T.J. (2000). Adsorption of water and methanol on micro- and mesoporous wood-based activated carbons. Langmuir 16, 5435–5440. DOI: 10.1021/la991257h CCC.
  • 28. Downarowicz, D. & Aleksandrzak, T. (2017). Isobutanol vapor adsorption on activated carbons: equilibrium and kinetic studies. J. Chem. Eng. Data 62, 3518−3524. DOI: 10.1021/acs. jced.6b00583.
  • 29. Worch, E. (2012). Adsorption technology in water treatment: fundamentals, processes, and modeling. Berlin-Boston, DE GRUYTER.
  • 30. Yang, R.T. (1987). Gas separation by adsorption processes, Stoneham, Butterworth Publishers.
  • 31. Basmadjian, D. (1996). The little adsorption book: a practical guide for engineers and scientists. Boca Raton, CRC Press.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2a01ba5-8838-44f0-80cb-ea4cbfed9a95
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.