Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the mathematical model of a single-phase multi-winding core type transformer taking into account magnetic hysteresis phenomenon based on the feedback Preisach model (FPM). The set of loop differential equations was developed for a K-th winding transformer model where the flux linkages of each winding includes flux Φ common to all windings as a function of magneto motive force Θ of all windings. The first purpose of this paper is to implement a hysteresis nonlinearity involved in the Φ(Θ) function which also accounts residual magnetic flux. The second purpose of this paper is experimental validation of the developed transformer model in a capacitor discharge test and several different values of residual magnetic flux.
Czasopismo
Rocznik
Tom
Strony
41--54
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wz.
Twórcy
autor
- Gdansk University of Technology, Faculty of Electrical and Control Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Gdansk University of Technology, Faculty of Electrical and Control Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
- [1] Ling P.C.Y., Basak A., Investigation of magnetizing inrush current in a single-phase transformer, IEEE Transactions on Magnetics, vol. 24, no. 6, pp. 3217-3222 (1988).
- [2] Brunke J.H., Frölich K.J., Eliminations of transformer inrush currents by controlled switching – Part II: Application and performance considerations, IEEE Transactions on Power Delivery, vol. 16, no. 2, pp. 281-285 (2001).
- [3] Lin C.E., Cheng C.L., Huang C.L., Yeh J.C., Investigation of magnetizing inrush current in transformers. Part I – Numerical simulation, IEEE Transactions on Power Delivery, vol. 8, no. 1, pp. 246-253 (1993).
- [4] Teape J.W., Slater R.D., Simpson R.R., Wood W.S., Hysteresis effects in transformers, including ferroresonance, Proceedings of IEE, vol. 123, no. 2, pp. 153-158 (1976).
- [5] Abdulsalam S.G., Xu W., A sequential phase energization method for transformer inrush current reduction – Transient performance and practical considerations, IEEE Transactions on Power Delivery, vol. 22, no. 1, pp. 208-216 (2007).
- [6] Hayek J.E., Transformer design as a key for efficiency optimization, XIX Inter. Conf. on Electrical Machines (ICEM-2010), Rome, Italy, pp. 1-4 (2010).
- [7] Jager W.A.G., and Tubbing G.H., A vector oriented control strategy for a 4-quadrant line side converter, Fifth European Conference on Power Electronics and Applications (1993), Brighton, pp. 213-218 (1993).
- [8] Wilk A., Internal winding fault detection in a traction transformer using a real-time reference model, Electromotion, vol. 17, no. 1, pp. 37-46 (2010).
- [9] Preisach F., Über die magnetische Nachwirkung, Zeitschrift für Physik, Bd.94, 1935, pp. 274-302 (1935).
- [11] Jiles D.C., Atherton D.L., Ferromagnetic hysteresis, IEEE Transactions on Magnetics, vol. 19 no. 5, pp. 2183-2185 (1983).
- [12] Liorzu F., Phelps B., Atherton D.L., Macroscopic models of magnetization, IEEE Transactions On Magnetics, vol. 36, no. 2, pp. 418-428 (2000).
- [13] Łyskawiński W., Sujka P., Szeląg W., Barański M., Numerical analysis of hysteresis loss in pulse transformer, Archives of Electrical Engineering, vol. 60, no. 2, pp. 187-195 (2011).
- [14] Jędryczka C., Sujka P., Szeląg W., The influence of magnetic hysteresis on magnetorheological fluid clutch operation, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 26 no. 2, pp. 711-721 (2009).
- [15] Gyselinck J., Dular P., Sadowski N., Leite J., Bastos J., Incorporation of a Jiles-Atherton vector hysteresis model in 2D FE magnetic field computations, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 23 no. 3, pp. 685-93 (2004).
- [16] Knypiński Ł., Nowak L., Sujka P., Radziuk K., Application of a PSO algorithm for identification of the parameters of Jiles-Atherton hysteresis model, Archives of Electrical Engineering, vol. 61, no 2, pp. 139-148 (2012).
- [17] Krasnosel'skii M.A., Pokrovskii A.V., Sistemy s gisterezisom (Systems with Hysteresis), Nauka, Moskow (1983).
- [18] Mayergoyz I.D., Mathematical models of hysteresis, IEEE Transactions on Magnetics, vol. MAG-22, no. 5, pp. 603-608 (1986).
- [19] Brokate M., Della Tore E., The wiping-out property of the moving model, IEEE Transactions on Magnetics, vol. 27 no. 5, pp. 3811-3814 (1991).
- [20] Kadar G., Della Torre E., Hysteresis modeling I: Noncongruency, IEEE Transactions on Magnetics, vol. 23, no. 5, pp. 2820-2822 (1987).
- [21] Iványi A., Füzi J., Szabó Z., Preisach models of ferromagnetic hysteresis, Electrical Review (Poland), R. LXXIX 3/2003, pp. 145-150 (2003).
- [22] Adly A.A., Hanafy H.H., Abu-Shady S.E., Utilizing Preisach models of hysteresis in the computation of three-phase transformer inrush currents, Electric Power System Research, vol. 65, pp. 233-238 (2003).
- [23] Faiz J., Saffari S., Inrush current modeling in a single-phase transformer, IEEE Transactions on Magnetics, vol. 46, no. 2, pp. 578-581 (2010).
- [24] Wilk A., Representation of magnetic hysteresis in a circuit model of a single-phase transformer, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34, no. 3, pp. 778-791 (2015).
- [25] Wilk A., Nieznanski J., Moson I., Nonlinear model of a wound iron core traction transformer with the account of magnetic hysteresis, XIX International Conference on Electrical Machines (ICEM-2010), Rome, Italy, pp. 1-7 (2010).
- [26] Wilk A., Pokonski R., Determination of leakage inductances of multi-winding and single-phase transformer, The Scientific Papers of Faculty And Control Engineering, Gdansk University of Technology, no. 31, Gdansk, Poland 2011, pp. 145-150 (2011).
- [27] Mayergoyz I.D., Adly A.A., Numerical Implementation of the feedback Preisach model, IEEE Transactions on Magnetics, vol. 28, no. 5, pp. 2605-2607 (1992).
- [28] Della Torre E., Vajda F., Parameter identification of the complete-moving-hysteresis model using major loop data, IEEE Transactions on Magnetics, vol. 30 no. 6, pp. 3811-3814 (1994).
- [29] Ragusa C., An analytical method for the identification of the Preisach distribution function, Journal of Magnetism and Magnetic Materials, vol. 254-255, pp. 259-261 (2003).
- [30] Dolinar M., Dolinar D., Štumberger G., Polajžer B., Ritonja J., A three-phase core-type transformer iron core model with included magnetic cross saturation, IEEE Transactions on Magnetics, vol. 42, no. 10, pp. 2849-2851 (2006).
- [31] Fuchs E.F., You Y., Measurement of λ-i characteristics of asymmetric three-phase transformers and their applications, Proc. Ninth International conference on Harmonics and Quality of Power, Orlando, Florida, USA, pp. 91-96 (2000).
- [32] More J.J., The Levenberg-Marquardt algorithm: Implementation and theory. Lecture Notes in Mathematics, Numerical Analysis, vol. 630, pp. 105-116 (1978).
- [33] Wilk A., Michna M., Cichowski A., Simulation of the remanence influence on the transient states of the single-phase transformer including feedback Preisach model, 40th Annual Conference of the IEEE Industrial Electronics Society (IECON-2014), Dallas, TX, USA, pp. 875-880 (2014).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c29fc1c3-99ca-4de1-99fa-3012bbe3ae96