PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Flotation as a Method for Metal Recovery from Printed Circuit Boards (PCBs)

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Flotacja jako metoda odzyskiwania metalu z płytek drukowanych (PCB)
Języki publikacji
EN
Abstrakty
EN
Technological advancement and the accelerating growth of waste electrical and electronic equipment (WEEE) pose major challenges for resource recovery, particularly of metals embedded in printed circuit boards (PCBs). This study evaluates the effectiveness of flotation for the selective separation of metals from the non-metallic fractions of PCBs. Flotation experiments were conducted under various reagent regimes (different types and dosages). The investigation covered both the physicochemical properties of PCB feed material and the influence of process parameters on metal recovery. Results demonstrate that flotation can enhance the recovery of valuable metals while simultaneously minimizing material losses and mitigating environmental impacts, fully supporting circular economy principles. The work underscores the need to optimise technological parameters and to integrate flotation with other PCB recycling stages, thereby fostering more sustainable electronic waste management strategies.
PL
Postęp technologiczny i przyspieszony wzrost ilości zużytego sprzętu elektrycznego i elektronicznego (ZSEE) stanowią poważne wyzwanie dla odzysku zasobów, zwłaszcza metali wbudowanych w płytki drukowane (PCB). Niniejsze badanie ocenia skuteczność flotacji w selektywnym oddzielaniu metali od frakcji niemetalicznych PCB. Eksperymenty flotacyjne przeprowadzono z różnymi reżimami odczynników (różne rodzaje i dawki). Badania obejmowały zarówno właściwości fizykochemiczne materiału wsadowego PCB, jak i wpływ parametrów procesu na odzysk metali. Wyniki pokazują, że flotacja może zwiększyć odzysk cennych metali, jednocześnie minimalizując straty materiałowe i łagodząc wpływ na środowisko, w pełni wspierając zasady gospodarki o obiegu zamkniętym. Praca podkreśla potrzebę optymalizacji parametrów technologicznych i integracji flotacji z innymi etapami recyklingu PCB, wspierając w ten sposób bardziej zrównoważone strategie gospodarowania odpadami elektronicznymi.
Rocznik
Strony
205--212
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr., zdj.
Twórcy
  • Department of Environmental Engineering, Faculty of Civil Engineering and Resource Management, AGH University of Krakow, Mickiewicza 30, 30-059 Cracow, Poland
Bibliografia
  • 1. Coombs, C. F. (Ed.). (2001). Printed circuit handbook (5th ed.). McGraw Hill.
  • 2. Das, A., Kumar, P., & Bandyopadhyay, S. (2021). Influence of surfactants on flotation behavior of PCBs. Waste Management, 119, 101–110. https://doi.org/10.1016/j.wasman.2020.11.030
  • 3. Das, A., Tiwari, A., & Panda, R. (2009). Physical separation methods for recovery of metals from waste PCBs. Resources, Conservation & Recycling, 53(9), 503–513. https://doi.org/10.1016/j.resconrec.2009.03.002
  • 4. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste. (2008). Official Journal of the European Union, L 312, 3–30.
  • 5. Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE). (2012). Official Journal of the European Union, L 197, 38–71.
  • 6. Exporting Harm: The High-Tech Trashing of Asia”. Dostęp: 3 grudzień 2024. [Online]. Dostępne na: https://www.researchgate.net/publication/228577617_Exporting_Harm_The_High-Tech_Trashing_of_Asia
  • 7. Goosey, M., & Kellner, R. (2003). Recycling technologies for the treatment of end of life printed circuit boards. Circuit World, 29(3), 33–37. https://doi.org/10.1108/03056120310460801
  • 8. Grause, G., Furusawa, M., Okuwaki, A., & Yoshioka, T. (2008). Pyrolysis of tetrabromobisphenol A containing paper laminated printed circuit boards. Chemosphere, 71(5), 872–878. https://doi.org/10.1016/j.chemosphere.2007.11.033
  • 9. Guo, X., Mei, G., & Liang, Y. (2020). Surface charge control in flotation of metal plastic mixtures from WPCBs. Separation Science and Technology, 55(10), 1765–1774. https://doi.org/10.1080/01496395.2019.1655414
  • 10. He, J., & Duan, G. (2017). Reverse flotation for metal enrichment from waste PCBs. Journal of Cleaner Production, 141, 1210–1218. https://doi.org/10.1016/j.jclepro.2016.09.184
  • 11. Kaya, M. (2016). Recovery of metals and non metals from electronic waste by physical and chemical recycling processes. Waste Management, 57, 64–90. https://doi.org/10.1016/j.wasman.2016.08.004
  • 12. Kim, S., & Overcash, M. (2004). Trends in the lifespan evolution of personal computers and implications for life cycle assessment: A case study of the U.S. higher education sector. Journal of Industrial Ecology, 8(1 2), 203–218. https://doi.org/10.1162/1088198041269414
  • 13. Knoth, R., M. Brandstötter, B. Kopacek, i P. Kopacek, „Automated disassembly of electr(on)ic equipment”, IEEE International Symposium on Electronics and the Environment, s. 290–294, 2002, doi: 10.1109/ISEE.2002.1003282.
  • 14. Layiding, W., X. Dong, M. Peng, i D. Guanghong, „Disassembling approaches and quality assurance of electronic components mounted on PCBs”, IEEE International Symposium on Electronics and the Environment, s. 116–120, 2005, doi:10.1109/ISEE.2005.1437004.
  • 15. Legarth, J. B. „Recycling of electronic scrap.”, Technical University of Denmark, Lyngby, 2002.
  • 16. Li, J., Shrivastava, P., Gao, Z., & Zhang, H. C. (2004). Printed circuit board recycling: A state of the art survey. IEEE Transactions on Electronics Packaging Manufacturing, 27(1), 33–42. https://doi.org/10.1109/TEPM.2004.830501
  • 17. Liu, Y., Zhang, L., & Chen, Y. (2022). Ultrasound assisted flotation for improving copper recovery from waste PCBs. Waste and Biomass Valorization, 13, 157–168. https://doi.org/10.1007/s12649 021 01552 2
  • 18. Mäkinen, J., Kinnunen, P., & Hämäläinen, M. (2015). Froth flotation of PCBs from mobile phones. Waste Management, 45, 347–354. https://doi.org/10.1016/j.wasman.2015.02.019
  • 19. Niu, B., Li, Y., & Zhang, L. (2018). Surface modification to improve flotation separation of copper from non metals in PCBs. Journal of Hazardous Materials, 347, 412–419. https://doi.org/10.1016/j.jhazmat.2018.01.010
  • 20. Oliveira, C., Amaral, M., & Ferreira, P. (2010). Characterization of waste printed circuit boards processed by shredding and milling. Waste Management, 30, 222–229. https://doi.org/10.1016/j.wasman.2009.09.018
  • 21. Puckett, J., Byster, L., Westervelt, S., Gutierrez, R., Davis, S., Hussain, A., & Dutta, M. (2004). Exporting harm: The high tech trashing of Asia. Basel Action Network & Silicon Valley Toxics Coalition.
  • 22. Qi H., Ganesan S., Wu J., and Pecht M., “Effects of printed circuit board materials on lead-free interconnect durability”, 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics, Wroclaw, Poland, pp. 140-144, October 23-26, 2005.
  • 23. Stobbe, I., H. Griese, H. Pötter, H. Reichl, i L. Stobbe, „Quality assured disassembly of electronic components for reuse”, IEEE International Symposium on Electronics and the Environment, s. 299–305, 2002, doi: 10.1109/ISEE.2002.1003284.
  • 24. Syrmakezis, A., Athanassiou, L., & Laskaris, N. (2023). Column flotation optimization for metal recovery from e waste. Journal of Environmental Management, 348, 118425. https://doi.org/10.1016/j.jenvman.2023.118425
  • 25. Veit, H. M., Diehl, T. R., Salami, A. P., Rodrigues, J. S., Bernardes, A. M., & Tenório, J. A. S. (2005). Utilization of magnetic and electrostatic separation in the recycling of printed circuit boards scrap. Waste Management, 25(1), 67–74. https://doi.org/10.1016/j.wasman.2004.09.009
  • 26. Wang, G., Huang, T., & Xu, Z. (2005). Characterization and liberation of valuable materials from waste printed circuit boards. Waste Management, 25, 217–223. https://doi.org/10.1016/j.wasman.2004.12.018
  • 27. Widmer, R., Oswald Krapf, H., Sinha Khetriwal, D., Schnellmann, M., & Böni, H. (2005). Global perspectives on e waste. Environmental Impact Assessment Review, 25(5), 436–458. https://doi.org/10.1016/j.eiar.2005.04.001
  • 28. Xiang, D., Pang, Z. F., Long, D. F., Mou, P., Yang, J. P., & Duan, G. H. (2014). The disassembly process and apparatus of waste printed circuit board assembly for reusing the components. Applied Mechanics and Materials, 457–458, 474–485. https://doi.org/10.4028/amm.457-458.474
  • 29. Yao, Y., Li, J., & Zhang, Q. (2020). Optimization of flotation conditions for selective metal recovery. Separation and Purification Technology, 245, 116847. https://doi.org/10.1016/j.seppur.2020.116847
  • 30. Yoo, J. M., Jeong, J., Yoo, K., Lee, J. C., & Kim, W. (2009). Enrichment of the metallic components from waste printed circuit boards by a mechanical separation process using a stamp mill. Waste Management, 29(3), 1132–1137. https://doi.org/10.1016/j.wasman.2008.06.035
  • 31. Zhu, P., Tian, W., Li, B., Hu, X. (2019). Copper recovery from waste PCBs by flotation after mechanical treatment. Waste Management, 85, 449–456. https://doi.org/10.1016/j.wasman.2018.12.005
  • 32. CPU Museum. (2022, July 15). The life cycle of a CPU. https://www.cpushistory.com/life cycle cpu
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2921116-957c-4be9-bba8-aea331cf139e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.