PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancing seismic performance of buckling-restrained brace frames equipped with innovative bracing systems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, to improve the performance of conventional bracing systems, in which, buckling in the pressure loads is the main disadvantage, the buckling-restrained brace (BRB) is introduced as a solution. In this study, the performance of the BRB system was improved with innovative lateral-resisting systems of double-stage yield buckling-restrained brace (DYB), and a combination of DYB improved with shape memory alloy (SMA) materials (DYBSMA). The proposed systems have been verified and implemented in the 2- to 12-story elevation steel buckling-restrained brace frames (BRBFs). To evaluate their effects on the seismic performance, two types of analysis including nonlinear dynamic analysis (NDA) and incremental dynamic analysis (IDA) were performed considering design-based earthquakes (DBE) and maximum considered earthquakes (MCE) levels for far-feld ground motions. The results showed that the BRB system in all BRBFs had the highest values of residual drift ratio (RDRmed demands, while implementing innovative DYBSMA can considerably reduce the values of RDRMed compared to other lateral-resisting systems. In addition, under MCE level, the BRB-DYBSMA system had lower values of the interstory drift ratio (IDRMed) and RDRMed demands (e.g., the IDRMed reduced by 79.67% and 18.5% compared to BRB and DYB systems, respectively), and can be introduced as the best lateral-resisting system. Therefore, the proposed BRB-DYBSMA system can effectively reduce the IDRMed and RDRMed demands, as result, higher performance levels can be achieved, as well as, the collapse probability occurrence over 1 and 50 years impressively decreased.
Rocznik
Strony
art. e243, 1--21
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
  • Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin, Iran
  • Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin, Iran
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Gdansk, Poland
  • University College London, Deptment of Civil, Environmental & Geomatic Engineering, London, UK
Bibliografia
  • 1. Tabatabaei SA, Mirghaderi SR, Hosseini A. Experimental and numerical developing of reduced length buckling-restrained braces. Eng Struct. 2014;15(77):143-60.
  • 2. Mortezagholi MH, Zahrai SM. Analytical and numerical studies on reducing lateral restraints in conventional & all steel buckling restrained braces. J Build Eng. 2020;1(32): 101513.
  • 3. Pandikkadavath MS, Sahoo DR. Cyclic testing of short-length buckling-restrained braces with detachable casings. Earthq Struct. 2016;10(3):699-716.
  • 4. Hosseinzadeh S, Mohebi B. Seismic evaluation of all-steel buckling restrained braces using finite element analysis. J Constr Steel Res. 2016;1(119):76-84.
  • 5. Judd JP, Marinovic I, Eatherton MR, Hyder C, Phillips AR, Tola AT, Charney FA. Cyclic tests of all-steel web-restrained buckling-restrained brace subassemblages. J Constr Steel Res. 2016;1(125):164-72.
  • 6. Tong JZ, Guo YL. Numerical investigations on elastic buckling and hysteretic behavior of steel angles assembled buckling restrained braces. J Constr Steel Res. 2018;1(144):21-39.
  • 7. Jia LJ, Ge H, Maruyama R, Shinohara K. Development of a novel high-performance all-steel fish-bone shaped buckling-restrained brace. Eng Struct. 2017;1(138):105-19.
  • 8. Yakhchalian M, Yakhchalian M, Asgarkhani N. An advanced intensity measure for residual drift assessment of steel BRB frames. Bull Earthq Eng. 2021;19:1931-55.
  • 9. Asgarkhani N, Yakhchalian M, Mohebi B. Evaluation of approximate methods for estimating residual drift demands in BRBFs. Eng Struct. 2020;1(224): 110849.
  • 10. Kazemi F, Jankowski R. Seismic performance evaluation of steel buckling-restrained braced frames including SMA materials. J Constr Steel Res. 2023;1(201): 107750.
  • 11. Zhang S, Tagawa H, Chen X. Study on buckling-restrained braces using multiple round steel core bars. J Constr Steel Res. 2022;1(199): 107573.
  • 12. Mateus JA, Tagawa H, Chen X. Buckling-restrained brace using round steel bar cores restrained by inner round steel tubes and outer square steel tube. Eng Struct. 2019;15(197): 109379.
  • 13. Bai J, Chen H, Jin S, You T. Development of dual-parameter loading protocols for buckling-restrained braced RC frames considering variable axial loads. Eng Struct. 2022;1(262): 114388.
  • 14. Zhang Y, Ren X, Zhang XY, Huang TT, Sun L, Xie YM. A novel buckling-restrained brace with auxetic perforated core: Experimental and numerical studies. Eng Struct. 2021;15(249): 113223.
  • 15. Sun J, Pan P, Wang H. Development and experimental validation of an assembled steel double-stage yield buckling restrained brace. J Constr Steel Res. 2018;1(145):330-40.
  • 16. Hu B, Min Y, Wang C, Xu Q, Keleta Y. Design, analysis and application of the double-stage yield buckling restrained brace. J Build Eng. 2022;1(48): 103980.
  • 17. Miller DJ, Fahnestock LA, Eatherton MR. Development and experimental validation of a nickel-titanium shape memory alloy self-centering buckling-restrained brace. Eng Struct. 2012;1(40):288-98.
  • 18. Ghowsi AF, Sahoo DR. Near-field earthquake performance of SCBRBs with optimal design parameters of SMA. J Constr Steel Res. 2020;1(175): 106321.
  • 19. Shi F, Saygili G, Ozbulut OE. Probabilistic seismic performance evaluation of SMA-braced steel frames considering SMA brace failure. Bull Earthq Eng. 2018;16:5937-62.
  • 20. Shi F, Saygili G, Ozbulut OE, Zhou Y. Risk-based mainshockaftershock performance assessment of SMA braced steel frames. Eng Struct. 2020;212: 110506.
  • 21. Shi F, Zhou Y, Ozbulut OE, Ren F. Hysteretic response and failure behavior of an SMA cable-based self-centering brace. Struct Control Health Monit. 2022;29(1): e2847.
  • 22. Kong S, Shi F, Zhou Y, Ma Y, Xie L. Influence of BRBs deformation capacity on the seismic performance of RC building frames. Soil Dyn Earthq Eng. 2022;161: 107442.
  • 23. Shi F, Lin Z, Li Q, Ozbulut OE, He Z, Zhou Y. Design, manufacturing, and testing of a hybrid self-centering brace for seismic resilience of buildings. Earthq Eng Struct Dynam. 2023;52(5):1381-402.
  • 24. Barbagallo F, Bosco M, Marino EM, Rossi PP. Achieving a more effective concentric braced frame by the double-stage yield BRB. Eng Struct. 2019;186:484-97.
  • 25. Kiggins S, Uang CM. Reducing residual drift of buckling-restrained braced frames as a dual system. Eng Struct. 2006;28(11):1525-32.
  • 26. Marshall JD, Charney FA. Seismic response of steel frame structures with hybrid passive control systems. Earthq Eng Struct Dynam. 2012;41(4):715-33.
  • 27. Qiu C, Du X. Seismic performance of multistory CBFs with novel recentering energy dissipative braces. J Constr Steel Res. 2020;1(168): 105864.
  • 28. Zhu R, Guo T, Tesfamariam S. Residual displacement demand for non-degrading bilinear SDOF oscillators with self-centering viscous-hysteretic devices. Soil Dyn Earthq Eng. 2022;1(155): 107189.
  • 29. McKenna F, Fenves GL, Filippou FC, Scott MH. Open system for earthquake engineering simulation (OpenSees). Berkeley: Pacific Earthquake Engineering Research Center, University of California; 2005.
  • 30. Qiu CX, Zhu S. Performance-based seismic design of self-centering steel frames with SMA-based braces. Eng Struct. 2017;1(130):67-82.
  • 31. Kazemi F, Jankowski R. Enhancing seismic performance of rigid and semi-rigid connections equipped with SMA bolts incorporating nonlinear soil-structure interaction. Eng Struct. 2023;1(274): 114896.
  • 32. ASCE 7-10. Minimum design loads and associated criteria for buildings and other structures. Reston: American Society of Civil Engineers; 2010.
  • 33. AISC Committee. Specification for structural steel buildings (ANSI/AISC 360-10). Chicago-Illinois: American Institute of Steel Construction; 2010.
  • 34. AISC, A. AISC 341-10, seismic provisions for structural steel buildings. Chicago, IL: American Institute of Steel Construction; 2010.
  • 35. Kazemi F, Asgarkhani N, Jankowski R. Machine learning-based seismic response and performance assessment of reinforced concrete buildings. Arch Civil Mech Eng. 2023;23(2):94.
  • 36. Asgarkhani N, Kazemi F, Jankowski R. Optimal retrofit strategy using viscous dampers between adjacent RC and SMRFs prone to earthquake-induced pounding. Arch Civil Mech Eng. 2022;23(1):7.
  • 37. Kazemi F, Jankowski R. Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames considering soil-structure interaction. Comput Struct. 2023;1(274): 106886.
  • 38. Kazemi F., Asgarkhani N, Jankowski R. Predicting seismic response of SMRFs founded on different soil types using machine learning techniques. Eng Struct. 2023;1(274): 114953.
  • 39. Kazemi F, Asgarkhani N, Jankowski R. Probabilistic assessment of SMRFs with infill masonry walls incorporating nonlinear soil structure interaction. Bull Earthq Eng. 2023;21(1):503-34.
  • 40. Kazemi F, Asgarkhani N, Jankowski R. Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures. Soil Dyn Earthq Eng. 2023;1(166): 107761.
  • 41. Kazemi F., Asgarkhani N, Manguri A, Lasowicz N, Jankowski R. Introducing a Computational Method to Retrofit Damaged Buildings under Seismic Mainshock-Aftershock Sequence. In: International Conference on Computational Science; 2023 Jun 26. pp. 180-187.
  • 42. Applied Technology Council (FEMA P695). Quantification of building seismic performance factors. US Department of Homeland Security, FEMA; 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c28af6ac-2087-4f6e-920c-db4f96582a72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.