PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of isoperibolic reaction calorimeter for the study of reaction kinetics of acetic anhydride hydrolysis reaction: Effect of acetic anhydride and water ratio

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
The International Chemical Engineering Conference 2021 (ICHEEC): 100 Glorious Years of Chemical Engineering and Technology, September 16–19, 2021
Języki publikacji
EN
Abstrakty
EN
Reaction kinetics of acetic anhydride hydrolysis reaction is being studied at a fixed reaction temperature and ambient pressure using an isoperibolic reaction calorimeter. Temperature versus time data along with heat and mass balance is used to determine the kinetics parameters i.e. activation energy and Arrhenius coefficient. It has been studied with the varying volumetric ratio of acetic anhydride and water; and kinetics parameters were compared and plotted for each ratio. Such a study has not been done previously to determine the kinetics dependency on varying the acetic anhydride water ratio. As the acetic anhydride hydrolysis reaction is exothermic in nature, the present study will help to decide the safe and suitable operating conditions such as concentration and temperature for conducting this reaction at plant scale. The kinetic data presented can be used further for the mathematical modeling and simulation of such exothermic hydrolysis reactions.
Rocznik
Strony
255--–264
Opis fizyczny
Bibliogr. 11 poz., fot., wykr.
Twórcy
  • Scientific and Industrial Research – National Chemical Laboratory, Chemical Engineering and Process Development Division, Pune, India – 411008
  • Ambedkar National Institute of Technology, Department of Chemical Engineering, Jalandhar, Punjab, India – 144011
Bibliografia
  • 1. Asiedu N., Hildebrandt D., Glasser D., 2013. Kinetic modeling of the hydrolysis of acetic anhydride at higher temperatures using adiabatic batch reactor (thermos-flask). J. Chem. Eng. Process Technol., 4, 176. DOI: 10.4172/2157-7048.1000176.
  • 2. Bell W.C., Booksh K.S., Myrick M.L., 1998. Monitoring anhydride and acid conversion in supercritical/hydrothermal water by in situ fiber-optic Raman spectroscopy. Anal. Chem., 70, 332–339. DOI: 10.1021/ac9707141.
  • 3. Fritzler B.C., Dharmavaram S., Hartrim R.T., Diffendall G.F., 2014. Acetic anhydride hydrolysis at high acetic anhydride to water ratios. Int. J. Chem. Kinet., 46, 151–160. DOI: 10.1002/kin.20838.
  • 4. Garcia J.M., Bernardino I.R.B., Calasans V., Giudici R., 2021. Kinetics of the hydrolysis of acetic anhydride using reaction calorimetry: effects of strong acid catalyst and salts. Chem. Eng. Res. Des., 166, 29–39. DOI: 10.1016/j.cherd.2020.11.024
  • 5. Haji S., Can E., 2005. Kinetics of hydrolysis of acetic anhydride by in-situ FTIR spectroscopy. An experiment for the undergraduate laboratory. Chem. Eng. Educ., 39, 1, Winter 2005.
  • 6. Hirota W.H., Rodrigues R.B., Sayer C., Giudici R., 2010. Hydrolysis of Acetic anhydride: Non-adiabatic calorimetric determination of kinetics and heat exchange. Chem. Eng. Sci., 65, 3849–3858. DOI: 10.1016/j.ces.2010.03.028.
  • 7. Kralj A.K., 2007. Checking the kinetics of acetic acid production by measuring the conductivity. J. Ind. Eng. Chem., 13(4), 631–636.
  • 8. Salahudeen N., Rasheed A.A., 2020. Kinetics and thermodynamics of hydrolysis of crystal violet at ambient and below ambient temperatures. Sci. Rep., 10, 21929. DOI: 10.1038/s41598-020-78937-4.
  • 9. Singh J., 1997. Reaction calorimetry for process development: Recent advances. Process Saf. Prog., 16, 43–49. DOI: 10.1002/prs.680160113.
  • 10. Susanne F., Smith D.S., Codina A., 2012. Kinetic understanding using NMR reaction profiling. Org. Process Res. Dev., 16, 61–64. DOI: 10.1021/op200202k.
  • 11. Wiseman F.L., Scott D.W., Tamine J., O’Connell R., Smarra A., Olowoyo S., 2020. Analyses of reaction rate data for the simple hydrolysis of acetic anhydride in the acetonitrile/water and acetone/water cosolvent systems using recently developed thermodynamic rate equations. Int. J. Chem. Kinet., 52, 52–60. DOI: https://doi.org/10.1002/kin.21329.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c28a4185-5c24-4789-9d77-8145b3e1fbe9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.