PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

L0-norm gravity inversion with new depth weighting function and bound constraints

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Delineating geologic features through the inversion of gravity data is an important goal in a range of geophysical investigations. However, it is a well-known fact that gravity data inversion has no inherent depth resolution. In order to overcome this limitation, different depth weighting approaches have been developed. With the purpose of finding an effective and a more convenient way to precisely estimate the depth of the anomalous body, we have tested the most popularly used depth weighting function. Our test showed that it does not properly counteract the decay of the gravity kernel and is strongly dependent on the exponent term. To resolve this, we have proposed a new depth weighting function that can easily be automated and counteracts the depth dependent natural decay of the gravity kernel more appropriately. Through this, the challenges in trial and error selection of the exponent of the old depth weighting function are avoided. The new depth weighing function was then implemented to improve a gravity inversion method, which produces compact and sharp images of the subsurface density distributions. The inversion method is obtained from the minimization of an objective function, which consists of data misfit and L0-norm stabilizing functions, by iteratively reweighted least-squares algorithm. To evaluate the practicality and resolution capability of the method, it was tested using a number of synthetic data sets from geometrically complex models and real data. The inversion results proved the effectiveness of our method in producing geologically acceptable multiple localized bodies with improved depth resolution. This in turn illustrates the applicability of the newly proposed function in the inversion of gravity data.
Czasopismo
Rocznik
Strony
1619--1634
Opis fizyczny
Bibliogr. 76 poz.
Twórcy
  • College of Natural and Computational Sciences, Physics Department, Wolkite University, P.O. Box 07, Wolkite, Ethiopia
autor
  • Institute of Geophysics, Space Science and Astronomy, Addis Ababa University, Addis Ababa, Ethiopia
Bibliografia
  • 1. Ajo-Franklin J (2007) Applying compactness constraints to differential traveltime. Geophysics 72(4):67
  • 2. Al-Chalabi M (1971) Some studies relating to nonuniqueness in gravity and magnetic inverse problems. Geophysics 36(5):835–855
  • 3. Barbosa VC, F., Joao BC Silva, and Walter E. Medeiros, (1997) Gravity inversion of basement relief using approximate equality constraints on depths. Geophysics 62(6):1745–1757
  • 4. Barbosa VCF, Silva JB (1994) Generalized compact gravity inversion. Geophysics 59(1):57–68
  • 5. Barbosa VC, Silva JB (2006) Interactive 2D magnetic inversion: a tool for aiding forward modeling and testing geologic hypotheses. Geophysics 71(5):L43–L50
  • 6. Barbosa VC, Silva JB, Medeiros WE (2002) Practical applications of uniqueness theorems in gravimetry: part II—pragmatic incorporation of concrete geologic information. Geophysics 67(3):795–800
  • 7. Bertete-Aguirre H, Cherkaev E, Oristaglio M (2002) Non-smooth gravity problem with total variation penalization functional. Geophys J Int 149(2):499–507
  • 8. Boulanger O, Chouteau M (2001) Constraints in 3d gravity inversion. Geophys Prospect 49:265–280
  • 9. Camacho AG, Montesinos FG, Vieira R (1997) A three-dimensional gravity inversion applied to São Miguel Island (Azores). J Geophys Res: Solid Earth 102(B4):7717–7730
  • 10. Camacho AG, Montesinos FG, Vieira R (2000) Gravity inversion by means of growing bodies. Geophysics 65(1):95–101
  • 11. Cella F, Fedi M (2012) Inversion of potential field data using the structural index as weighting function rate decay. Geophys Prospect 60(2):313–336
  • 12. Chartrand R & Yin W (2008) Iteratively reweighted algorithms for compressive sensing.. s.l., IEEE, pp. 3869–3872.
  • 13. Chen GX, Chen SC, Wang HC, Zhang B (2013) Geophysical data sparse reconstruction based on L0-norm minimization. Appl Geophys 10(2):181–190
  • 14. Cheyney S, Fishwick S, Hill IA, Linford NT (2015) Successful adaptation of three-dimensional inversion methodologies for archaeological-scale, total-field magnetic data sets. Geophys J Int 202(2):1271–1288
  • 15. Commer M (2011) Three-dimensional gravity modelling and focusing inversion using rectangular meshes. Geophys Prospect 59:966–979
  • 16. Commer M, Newman GA (2008) New advances in three-dimensional controlled-source electromagnetic inversion. Geophys J Int 172(2):513–535
  • 17. Dai R, Yang J (2021) An alternative method based on region fusion to solve L0-norm constrained sparse seismic inversion. Explor Geophys 52(6):1–9
  • 18. Daubechies I, DeVore R, Fornasier M, Güntürk CS (2010) Iteratively reweighted least squares minimization for sparse recovery. Commun Pure Appl Mathemat: Journal Issued Courant Inst Mathemat Sci 63(1):1–38
  • 19. Farquharson GC (2008) Constructing piecewise-constant models in multidimensional minimum-structure inversions. Geophysics 73(1):K1–K9
  • 20. Farquharson CG, Oldenburg DW (2004) A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems. Geophys J Int 156(3):411–425
  • 21. Feng X, Wang W, Yuan B (2018) 3D gravity inversion of basement relief for a rift basin based on combined multinorm and normalized vertical derivative of the total horizontal derivative techniques. Geophysics 83(5):G107–G118
  • 22. Feng X et al (2020) Gravity inversion of blocky basement relief using L0 norm constraint with exponential density contrast variation. Pure Appl Geophys 177(8):1–15
  • 23. Ghalehnoee MH, Ansari A, Ghorbani A (2016) Improving compact gravity inversion based on new weighting functions. Geophys J Int 208(1):546
  • 24. Gholami A, Aghamiry HS (2017) Iteratively re-weighted and refined least squares algorithm for robust inversion of geophysical data. Geophys Prospect 65:201–215
  • 25. Gholami A, Gheymasi HM (2016) Regularization of geophysical ill-posed problems by iteratively re-weighted and refined least squares. Comput Geosci 20(1):19–33
  • 26. Grandis H, Dahrin D (2014) Constrained two-dimensional inversion of gravity data. J Mathemat Fundament Sci 46(1):1–13
  • 27. Green WR (1975) Inversion of gravity profiles by use of a backus-gilbert approach. Geophysics 40:763–772
  • 28. Guillen A, Menichetti V (1984) Gravity and magnetic inversion with minimization of a specific functional. Geophysics 49(8):1354–1360
  • 29. Hu M et al (2019) 3D sharp-boundary inversion of potential-field data with an adjustable exponential stabilizing functional. Geophysics 84(4):J1–J15
  • 30. Ji S et al (2019) Three-dimensional inversion of full magnetic gradient tensor data based on hybrid regularization method. Geophys Prospect 67(1):226–261
  • 31. Kim HJ, S. Y. & Lee, K. H. (1999) Inequality constraint in least-squares inversion of geophysical data. Earth, Planets and Space 51(4):255–259
  • 32. Last BJ, Kubik K (1983) Compact gravity inversion. Geophysics 48(6):713–721
  • 33. Lelièvre PG, Oldenburg DW, Williams NC (2009) Integrating geological and geophysical data through advanced constrained inversions. Explor Geophys 40(4):334–341
  • 34. Lelievre PG, Oldenburg DW (2006) Magnetic forward modelling and inversion for high susceptibility. Geophys J Int 166(1):76–90
  • 35. Lewi E (1997) Modelling and inversion of high precision gravity data., Munchen, Germany,: Verlag der bayerischen akademie der wissenschaften.
  • 36. Li Y, Oldenburg DW (1996) 3-D inversion of magnetic data. Geophysics 61(2):394–408
  • 37. Li Y, Oldenburg DW (1998) 3-D inversion of gravity data. Geophysics 63(1):109–119
  • 38. Li Y, Oldenburg DW (2003) Fast inversion of large-scale magnetic data using wavelet transforms. Geophys J Int 152:251–265
  • 39. Liu B, Li J, Zheng S (2018) Seismic sparse spike inversion based on L0 norm approximation. Oil Gas Prospect 53(5):961–968
  • 40. Meng Z (2018) Three-dimensional potential field data inversion with L0 quasinorm sparse constraints. Geophys Prospect 66(3):626–646
  • 41. Menke W (1989) Geophysical data analysis: discrete inverse theory. Revised edition, Academic Press, s.l.
  • 42. Namaki L, Gholami A, Hafizi MA (2011) Edge-preserved 2-D inversion of magnetic data: an application to the Makran arc-trench complex. Geophys J Int 184(3):1058–1068
  • 43. Oldenburg DW, Li Y (2005) Inversion for applied geophysics: a tutorial. Investigations Geophys 13:89–150
  • 44. Pedersen LB (1979) Constrained inversion of potential field data. Geophys Prospect 27(4):726–748
  • 45. Pilkington M (1997) 3-D magnetic imaging using conjugate gradients. Geophysics 62(4):1132–1142
  • 46. Pilkington M (2008) 3D magnetic data-space inversion with sparseness constraints. Geophysics 74(1):L7–L15
  • 47. Portniaguine O, Zhdanov MS (1999) Focusing geophysical inversion images. Geophysics 64(3):874–887
  • 48. Portniaguine O, Zhdanov MS (2002) 3-D magnetic inversion with data compression and image focusing. Geophysics 67(5):1532–1541
  • 49. Reichel L, Rodriguez G (2013) Old and new parameter choice rules for discrete ill-posed problems. Numerical Algorithms 63(1):65–87
  • 50. Rezaie M (2020) A sigmoid stabilizing function for fast sparse 3D inversion of magnetic data. Near Surf Geophys 18(2):149–159
  • 51. Rezaie M, Moazam S (2017) A new method for 3-D magnetic data inversion with physical bound. J Min Environ 8(3):501–510
  • 52. Rezaie M, Moradzadeh A, Kalate AN, Aghajani H (2016) Fast 3D focusing inversion of gravity data using reweighted regularized Lanczos bidiagonalization method. Pure Appl Geophys 174(1):359–374
  • 53. Rezaie M (2019) 3D non-smooth inversion of gravity data by zero order minimum entropy stabilizing functional. Phys Earth Planetary Interiors 294:106275
  • 54. Silva JB, Barbosa VC (2006) Interactive gravity inversionInteractive gravity inversion. Geophysics 71(1):J1–J9
  • 55. Silva JB, Medeiros WE, Barbosa VC (2001) Potential-field inversion: choosing the appropriate technique to solve geologic problem. Geophysics 66:511–520
  • 56. Silva JB, Medeiros WE, Barbosa VC (2002) Practical applications of uniqueness theorems in gravimetry: Part I-constructing sound interpretation methods. Geophysics 67(3):788–794
  • 57. Silva Dias FJ, Barbosa VC, Silva JB (2009) 3D gravity inversion through an adaptive-learning procedure. Geophysics 74(3):I9–I21
  • 58. Stocco S, Godio A, Sambuelli L (2009) Modelling and compact inversion of magnetic data. Comput Geosci 35:2111–2118
  • 59. Sun J, Li Y (2014) Adaptive L p inversion for simultaneous recovery of both blocky and smooth features in a geophysical model. Geophys J Int 197(2):882–899
  • 60. Templeton R (1981) Gravity surveys at Woodlawn in Geophysical Case Study of the Woodlawn Ore Body New South Wales, Australia. In: s.l.:Pergamon Press, pp. 485- 494.
  • 61. Tikhonov AN, Goncharsky AV, Stepanov VV, Yagola AG (2013) Numerical methods for the solution of ill-posed problems. Springer Science & Business Media, USA
  • 62. Utsugi M (2019) 3-D inversion of magnetic data based on the L1–L2 norm regularization. Earth, Planets and Space 71(1):1–19
  • 63. Varfinezhad R, Oskooi B, Fedi M (2020) Joint Inversion of DC resistivity and magnetic data, constrained by cross gradients, compactness and depth weighting. Pure Appl Geophys 177(9):1–19
  • 64. Varfinezhad R, Fedi M, Milano M (2022) The role of model weighting functions in the gravity and DC resistivity inversion. IEEE Trans Geosci Remote Sens 60:1–15
  • 65. Vatankhah S, Ardestani VE, Renaut RA (2014) Automatic estimation of the regularization parameter in 2D focusing gravity inversion: application of the method to the Safo manganese mine in the northwest of Iran. J Geophys Eng 11(4):045001
  • 66. Vatankhah S, Ardestani VE, Renaut RA (2015) Application of the χ2 principle and unbiased predictive risk estimator for determining the regularization parameter in 3-D focusing gravity inversion. Geophys J Int 200(1):265–277
  • 67. Virtanen P et al (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Method 17(3):261–272
  • 68. Wang Y et al (2013) Data regularization using Gaussian beams decomposition and sparse norms. J Inverse Ill-Posed Prob 21(1):1–23
  • 69. Wang L, Wang J, Xiang J, Yue H (2019) A re-weighted smoothed L0-norm regularized sparse reconstructed algorithm for linear inverse problems. J Phys Commun 3(7):75004
  • 70. Whiteley R (1981) Geophysical case study of the woodlawn orebody new South Wales, Australia. Pergamon Press, s.l.
  • 71. Williams N C (2008) Geologically-constrained UBC–GIF gravity and magnetic inversions with examples from the Agnew-Wiluna greenstone belt, Western Australia (Doctoral dissertation, University of British Columbia), s.l.: s.n.
  • 72. Zhang L et al (2012) A regularized three-dimensional magnetotelluric inversion with a minimum gradient support constraint. Geophys J Int 189(1):296–316
  • 73. Zhang Z et al (2015) A survey of sparse representation: algorithms and applications. IEEE 3:490–530
  • 74. Zhao C, Yu P, Zhang L (2016) A new stabilizing functional to enhance the sharp boundary in potential field regularized inversion. J Appl Geophys 135:356–366
  • 75. Zhdanov MS (2015) Inverse theory and applications in geophysics. Elsevier, s.l.
  • 76. Zhdanov MS (2009) New advances in regularized inversion of gravity and electromagnetic data. Geophys Prospect 57(4):463–478
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2898c75-da50-4190-b015-a40509ca33e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.