Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Analiza wpływu części pomiarowej różnicowego cyfrowego zabezpieczenia transformatora uwzględniająca przetwarzanie sygnału pierwotnego
Języki publikacji
Abstrakty
Calculation of relay protection (RP) settings ensuring its adequate functioning under specific operating conditions is extremely difficult task. The main prerequisite for solving this problem is availability of a detailed analysis of functioning of key elements of RPs schemes in the specific conditions of its operation. That is possible to do with adequate RPs mathematical models and modern EPS simulators. Based on developed by authors approach for detailed RPs simulation the models of the whole circuit of measuring part (MP) of numerical transformer differential protection were developed for different types of auxiliary transformers and low-pass filters. A comparative numerical analysis of its impact on the primary signal processing is carried out, including taking into account the magnetization current transformers. Summarizing, the theoretical and practical studies presented in the article allows formulating requirements for RPs’ detailed mathematical models, which will be used in the further research.
W artykule analizoano warunki prawidłowej pracy cyfrowego zabezpieczenia pracy transformatora. W tym celu opracowano model matematyczny układu zabezpieczającego ze szczególnym uwzględnieniem pracy filtru. Przeprowadzono symulacje dla różnych typów zewnętrznego transformatora i filtru dolnoprzepustowego.
Wydawca
Czasopismo
Rocznik
Tom
Strony
71--74
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
- Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk, Russia
autor
- Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk, Russia
autor
- Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk, Russia
autor
- Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk, Russia
autor
- Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk, Russia
Bibliografia
- [1] International energy outlook 2016. U.S. Energy Information Administration. Available at: http://www.eia.gov/forecasts/ieo/world.cfm (accessed 10.04.2018)
- [2] Jennett K., Coffele F., Booth C., Comprehensive and quantitative analysis of protection problems associated with increasing penetration of inverter-interfaced DG. Proceedings of Int. Conf. Developments in Power Systems Protection, Birmingham, UK, 2012, pp. 1–6.
- [3] Sykes J., Madani V., Burger J., Adamiak M., Premerlani W., Reliabilty of protection systems (what are the real concerns). Proceedings of Int. Conf. Protective Relay Engineer, College Station, TX, USA, 2010, pp. 1–16.
- [4] Andreev M. V., Sulaymanov A. O., Gusev A. S., Simulation of differential protections of transformers in power systems. Proceedings of Int. Conf. Developments in Power Systems Protection, Edinburgh, UK, 2016, pp. 1–6.
- [5] Bejmert D., Rebizant W., Application of fuzzy logic for stabilization of transformer differential protection, Przegląd Elektrotechniczny, 86, 2010, nr 8, pp. 11-15.
- [6] Babczynski T., Lukowicz M., Magott J., Selection of Zone 3 time delay for backup distance protection using probabilistic fault trees with time dependencies, Przegląd Elektrotechniczny, 86, 2010, nr 9, pp. 208-215.
- [7] Hall G., Watt J. M. Modern numerical methods for ordinary differential equations - Oxford University Press, London, 1976.
- [8] Watson N, Arrillaga J. Power systems electromagnetic transients simulation - The Institution of Engineering and Technology, London, 2007.
- [9] Prokhorov A., Borovikov Y., Gusev A., Real time hybrid simulation of electrical power systems: concept, tools, field experience and smart grid challenges. International Journal of Smart Grid and Clean Energy, 2012, Vol. 1, iss. 1, pp. 67–68.
- [10] Abrahams J. R., Coverley G. P. Signal flow analysis - Pergamon press, Oxford, 1965.
- [11] Ziegler G. Numerical Differential Protection – Publicis Publishing, Erlangen, 2012.
- [12] Horowitz P., Hill W. The Art of Electronics – Cambridge University Press, Cambridge, 2015.
- [13] Seethalekshmi K., Singh S. N., Srivastava S. C., A classification approach using support vector machines to prevent distance relay maloperation under power swing and voltage instability. IEEE Trans. Power Delivery, 2012, Vol. 27, iss. 3, pp. 1124–1133.
- [14] Rumiantsev, Yu. V. “Complex model for investigation of the operation of the digital differential protection of a power transformer,” Energetika Proc. CIS Higher Educ. Inst. and Power Eng. Assoc, Vol. 59, No. 3, pp. 203–224, June 2016.
- [15] Kezunovic, M., and Chen, Q. “A novel approach for interactive protection system simulation,” IEEE Trans. Power Delivery, Vol. 12, No. 2, pp. 668–674, April 1997.
- [16] Hong Q., Booth C., Dyśko A., Catterson V., Design of an intelligent system for comprehensive validation of protection settings. Proceedings of Int. Conf. Developments in Power Systems Protection Conf., Edinburgh, UK, 2016, pp. 1–6.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2826217-13cb-4553-8399-b5c49c5c76ac