PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enrichment of thermosensitive chitosan hydrogels with glycerol and alkaline phosphatase for bone tissue engineering applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermosensitive injectable chitosan hydrogels can be formed by neutralization of acidic chitosan solutions with sodium betaglycerophosphate (Na-β-GP) coupled with increasing temperature to body temperature. Such hydrogels have been considered for applications in bone regeneration. In this study, chitosan hydrogels were enriched with glycerol and the enzyme alkaline phosphatase (ALP) with a view to improving their suitability as materials for bone tissue engineering. Mineral formation was confirmed by infrared spectroscopy (FTIR) and increases in the mass fraction of the hydrogel not consisting of water. Incorporation of ALP in hydrogels followed by incubation in a solution containing calcium ions and glycerophosphate, a substrate for ALP, led to formation of calcium phosphate within the hydrogel. MG-63 osteoblast-like cells were cultivated in eluates from hydrogels containing ALP and without ALP at different dilutions and directly on the hydrogel samples. Hydrogels containing ALP exhibited superior cytocompatibility to ALP-free hydrogels. These results pave the way for the use of glycerol- and ALP-enriched hydrogels in bone regeneration.
Rocznik
Strony
51--57
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • Polymer Chemistry and Biomaterials (PBM) Group, Department of Organic Chemistry, University of Ghent, Gent, Belgium
  • Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Kraków, Poland
autor
  • Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Kraków, Poland
autor
  • Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Kraków, Poland
autor
  • Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Kraków, Poland
Bibliografia
  • [1] ABERG J., HENRIKSSON H.B., ENGQVIST H., PALMQUIST A., BRANTSING C., LINDAHL A., THOMSEN P., BRISBY H., Biocompatibility and resorption of a radiopaque premixed calcium phosphate cement, J. Biomed. Mater. Res. A, 2001, Vol. 100(5), 1269–1278.
  • [2] BHATTARAI N., GUNN J., ZHANG M., Chitosan-based hydrogels for controlled, localized drug delivery, Adv. Drug. Deliv. Rev., 2010, Vol. 62(1), 83–99.
  • [3] BOJAR W., KUCHARSKA M., BUBAK G., CIACH T., KOPERSKI Ł., JASTRZĘBSKI Z., GRUBER B.M., KRZYSZTOŃ-RUSSIAN J., MARCZEWSKA J., JANUSZEWSKA E.L., DROZD E., BRYNK T., Formation and preclinical evaluation of a new alloplastic injectable bone substitute material, Acta Bioeng. Biomech., 2012, Vol. 14(1), 39–44.
  • [4] CARDOSO D.A., VAN DEN BEUCKEN J.J., BOTH L.L., BENDER J., JANSEN J.A., LEEUWENBURGH S.C., Gelation and biocompatibility of injectable alginate-calcium phosphate gels for bone regeneration, J. Biomed. Mater. Res. A, 2014, Vol. 102(3), 808–817.
  • [5] CHENITE A., BUSCHMANN M., WANG D., CHAPUT C., KANDANI N., Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions, Carbohydrate Polymers, 2001, Vol. 46, 39–47.
  • [6] CHENITE A., CHAPUT C., WANG D., COMBES C., BUSCHMANNM.D.,HOEMANN C.D., LEROUX J.C., ATKINSON B.L., BINETTE F., SELMANI A., Novel injectable neutral solutions of chitosan form biodegradable gels in situ, Biomaterials, 2000, Vol. 21(21), 2155–2161.
  • [7] CUI J., LIANG J., WEN Y., SUN X., LI T., ZHANG G., SUN K., XU X., In vitro and in vivo evaluation of chitosan/betaglycerol phosphate composite membrane for guided bone regeneration, J. Biomed. Mater. Res. A, 2014, Vol. 102(9), 2911–2917.
  • [8] DASH M., CHIELLINI F., OTTENBRITE R.M., CHIELLINI E., Chitosan – A versatile semi-synthetic polymer in biomedical applications, Prog. Polym. Sci., 2011, Vol. 36(8), 981–1014.
  • [9] DASH M., SAMAL S.K., DOUGLAS T.E., SCHAUBROECK D., LEEUWENBURGH S.C., VAAN DER VOORT P., DECLERCQ H.A., DUBRUEL P., Enzymatically biomineralized chitosan scaffolds for tissue-engineering applications, J. Tissue Eng. Regen. Med., 2015, Jun 15. DOI: 10.1002/term.2048, [Epub ahead of print].
  • [10] DINSDALE C.J., MIRZA F.M., WIEBE J.P., Glycerol alters cytoskeleton and cell adhesion while inhibiting cell proliferation, Cell. Biol. Int. Rep., 1992, Vol. 16(7), 591–602.
  • [11] DOUGLAS T.E.L., GASSLING V., DECLERCQ H.A., PURCZ N., PAMULA E., HAUGEN H.J., CHASAN S., DE MULDER E.L., JANSEN J.A., LEEUWENBURGH S.C., Enzymatically induced mineralization of platelet-rich fibrin, J. Biomed. Mater. Res. A, 2012, Vol. 100(5), 1335–1346.
  • [12] DOUGLAS T.E.L., KRAWCZYK G., PAMULA E., DECLERCQ H.A., SCHAUBROECK D., BUCKO M.M., BALCAEN L, VAAN DER VOORT P., BLIZNUK V., VAN DER VREKEN N.M., DASH M., DETSCH R., BOCCACCINI A.R., VANHAECKE F., CORNELISSEN M., DUBRUEL P., Generation of composites for bone tissue engineering applications consisting of gellan gum hydrogels mineralized with calcium and magnesium phosphate phases by enzymatic means, J. Tissue Eng. Regen. Med., 2014, Feb. 21. DOI: 10.1002/term.1875. [Epub ahead of print].
  • [13] DOUGLAS T.E.L., MESSERSMITH P.B., CHASAN S., MIKOS A.G., DE MULDER E.L., DICKSON G., SCHAUBROECK D., BALCAEN L., VANHAECKE F., DUBRUEL P., JANSEN J.A., LEEUWENBURGH S.C., Enzymatic mineralization of hydrogels for bone tissue engineering by incorporation of alkaline phosphatase, Macromol. Biosci., 2012, Vol. 12(8), 1077–1089.
  • [14] DOUGLAS T.E.L., PAMULA E., LEEUWENBURGH S.C.G., Biomimetic Mineralization of Hydrogel Biomaterials for Bone Tissue Engineering, [in:] Biomimetics: Advancing Nanobiomaterials and Tissue Engineering, M. Ramalingam, X. Wang, G. Chen, P. Ma, F.Z. Cui (eds.), John Wiley & Sons, Hoboken, N.J., USA. 2013, 51–68.
  • [15] DOUGLAS T.E.L., PILAREK M., KALASZCZYŃSKA I., SENDEREK I., SKWARCZYŃSKA A., CUIJPERS V.M.J.I., MODRZEJEWSKA Z., LEWANDOWSKA-SZUMIEŁ M., DUBRUEL P., Enrichment of chitosan hydrogels with perfluorodecalin promotes gelation and stem cell vitality, Materials Letters, 2014, Vol. 128, 79–84.
  • [16] DOUGLAS T.E.L., SKWARCZYNSKA A., MODRZEJEWSKA Z., BALCAEN L., SCHAUBROECK D., LYCKE S., VANHAECKE F., VANDENABEELE P., DUBRUEL P., JANSEN J.A., LEEUWENBURGH S.C., Acceleration of gelation and promotion of mineralization of chitosan hydrogels by alkaline phosphatase, Int. J. Biol. Macromol., 2013, Vol. 56C, 122–132.
  • [17] DOUGLAS T.E.L., WLODARCZYK M., PAMULA E., DECLERCQ H.A., DE MULDER E.L., BUCKO M.M., BALCAEN L., VANHAECKE F., CORNELISSEN R., DUBRUEL P., JANSEN J.A., LEEUWENBURGH S.C., Enzymatic mineralization of gellan gum hydrogel for bone tissue-engineering applications and its enhancement by polydopamine, J. Tissue Eng. Regen. Med., 2014, Vol. 8, 906–918.
  • [18] FILMON R., BASLÉ M.F., ATMANI H., CHAPPARD D., Adherence of osteoblast-like cells on calcospherites developed on a biomaterial combining poly(2-hydroxyethyl) methacrylate and alkaline phosphatase, Bone, 2002, Vol. 30(1), 152–158.
  • [19] GKIONI K., LEEUWENBURGH S.C., DOUGLAS T.E.L., MIKOS A.G., JANSEN J.A., Mineralization of hydrogels for bone regeneration, Tissue Eng. Part B, Rev., 2010, Vol. 16(6), 577–585.
  • [20] KAZEK-KĘSIK A., KROK-BORKOWICZ M., PAMUŁA E., SIMKA W., Electrochemical and biological characterization of coatings formed on Ti-15Mo alloy by plasma electrolytic oxidation, Mater Sci. Eng. C Mater. Biol. Appl., 2014, Vol. 43, 172–181.
  • [21] KIM K.S., LEE J.H., AHN H.H., LEE J.Y., KHANG G., LEE B., LEE H.B., KIM M.S., The osteogenic differentiation of rat muscle-derived stem cells in vivo within in situ-forming chitosan scaffolds, Biomaterials, 2008, Vol. 29(33), 4420–4428.
  • [22] KOUTSOPOULOS S., Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods, J. Biomed. Mater. Res., 2002, Vol. 62(4), 600–612.
  • [23] PATOIS E., OSORIO-DA CRUZ S., TILLE J.-C., WALPOTH B., GURNY R., JORDAN O., Novel thermosensitive chitosan hydrogels: In vivo evaluation, J. Biomed. Mater. Res., 2009, Vol. 91A, 324–330.
  • [24] SUGAWARA A., FUJIKAWA K., HIRAYAMA S., TAKAGI S., CHOW L.C., In Vivo Characteristics of Premixed Calcium Phosphate Cements When Implanted in Subcutaneous Tissues and Periodontal Bone Defects, J. Res. Natl. Inst. Stan., 2010, Vol. 115(4), 277–290.
  • [25] SUGIYAMA N., MIZUGUCHI T., AOKI T., HUI T., INDERBITZIN D., DEMETRIOU A.A., ROZGA J., Glycerol suppresses proliferation of rat hepatocytes and human HepG2 cells, J. Surg. Res., 2002, Vol. 103(2), 236–242.
  • [26] TAKAGI S., CHOW L.C., HIRAYAMA S., SUGAWARA A., Premixed calcium-phosphate cement pastes, J. Biomed. Mater. Res. B Appl. Biomater., 2003, Vol. 67(2), 689–696.
  • [27] WIEBE J.P., DINSDALE C.J., Inhibition of cell proliferation by glycerol, Life Sci., 1991, Vol. 48(16), 1511–1517.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c27e48a6-710c-4d02-925f-677f8fabb43f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.