PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Crane stability assessment method in the operating cycle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents stability assessment of the mobile crane handling system based on the developed method with the use of the mathematical model built and the model built in the integrated CAD/CAE environment. The model proposed consists of the main crane assemblies coupled together: the truck with outrigger system and the base, the slewing column, the inner and outer arms, the six-member telescopic boom, the hook with lifting sling and the transported load. Analyses were conducted of the displacements of the mass centre of the crane system, reactions of the outrigger system, stabilizing and overturning torques that act on the crane as well as the safety indicator values for the given movement trajectories of the crane working elements.
Czasopismo
Rocznik
Strony
141--151
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
  • Faculty of Mechanical Engineering, Koszalin University of Technology Raclawicka 15-17, 75-620 Koszalin, Poland
autor
  • Faculty of Mechanical Engineering, Koszalin University of Technology Raclawicka 15-17, 75-620 Koszalin, Poland
autor
  • Faculty of Mechanical Engineering, Koszalin University of Technology Raclawicka 15-17, 75-620 Koszalin, Poland
Bibliografia
  • 1. Kacalak, W. & Budniak, Z. & Majewski, M. Computer aided analysis of the mobile crane handling system using computational intelligence methods. Advances in Intelligent Systems and Computing. 2018. Vol. 662. P. 250-261.
  • 2. Kacalak, W. & Budniak, Z. & Majewski, M. Analiza stateczności żurawia dla różnych stanów obciążeń i różnych przemieszczeń ładunku. Mechanik. 2016. No. 12. P. 1820-1823. [In Polish: Crane stability for various load conditions and trajectories of load translocation].
  • 3. Kacalak, W. & Budniak, Z. & Majewski, M. Model symulacyjny żurawia samojezdnego z zapewnieniem jego stateczności. Modelowanie inżynierskie. 2016. Vol. 29. No. 60. P. 35-43. [In Polish: Simulation model of a mobile crane with ensuring its stability. Engineering modeling].
  • 4. Cekus, D. Modelowanie i badania symulacyjne ruchu żurawia laboratoryjnego. Systems. Journal of Trandisciplinary Systems Science. 2012. Vol. 16. No. 2. P. 96-103. [In Polish: Simulation research of the laboratory truck crane].
  • 5. Herbin, P. & Pajor, M. Modelowanie kinematyki prostej i odwrotnej żurawia samochodowego o strukturze redundantnej z wykorzystaniem środowiska Matlab. Modelowanie Inżynierskie. 2016. Vol. 27. No. 58. P. 44-50. [In Polish: Simulation of interactions between mechanical and hydraulic system of loader crane. Engineering modeling].
  • 6. Trąbka, A. The influence of clearances in a drive system on dynamics and kinematics of a telescopic crane. Acta Mechanica et Automatica. 2015. Vol. 9. No.1. P. 9-13.
  • 7. Abdel-Rahman, E.M. & Nayfeh, A.H. & Masoud, Z.N. Dynamics and control of cranes. Journal of Vibration and Control. 2003. Vol. 9. No. 7. P. 863-908.
  • 8. Arena, A. & Lacarbonara, W. & Casalotti, A. Payload oscillations control in harbor cranes via semi-active vibration absorbers: modeling, simulations and experimental results. Procedia Engineering. 2017. Vol. 199. P. 501-509.
  • 9. Posiadała, B. Modelowanie identyfikacja modeli i badania dynamiki żurawi samojezdnych. WNT. Warszawa 2005. 212 p. [In Polish: Modelling and identification of models and tests of dynamics of mobile cranes. WNT Warsaw].
  • 10. Geisler, T. Analiza statyczna ustroju nośnego żurawia samochodowego DST-0285. Przegląd Mechaniczny. 2012. No. 7-8. P.42-48. [In Polish: Static analysis of the truck crane structure DST-0285. Mechanical Review].
  • 11. Posiadała, B. & Warys, P. & Cekus, D. & Tomala, M. The dynamics of the forest crane during the load carrying. International Journal of Structural Stability and Dynamics. 2013. Vol. 13. No. 7. P. 1-9.
  • 12. Anezirisa, O.N. & Papazoglou, I.A. & Mud, M.L. & et al. Towards risk assessment for crane activities. Safety Science. 2008. Vol. 46. No. 6. P. 872-884.
  • 13. Janusz, J. & Kłosiński, J. Wpływ wybranych strategii sterowania ruchami roboczymi żurawia samojezdnego na jego stateczność. Acta Mechanica et Automatica. 2010. Vol.10. No. 2. P. 74-80. [In Polish: Influence of the selected control strategies of mobile crane motions on its stability].
  • 14. Kłosiński, J. & Janusz, J. Control of Operational Motions of a Mobile Crane under a Threat of Loss of Stability. Solid State Phenomena. 2009. Vol. 144. P. 77-82.
  • 15. Lei, Z. & Taghaddos, H. & Han, S. & Bouferguene, A. & Al-Hussein, M. & Hermann, U. From AutoCAD to 3ds Max: An automated approach for animating heavy lifting studies. Canadian Journal of Civil Engineering. 2015. Vol. 42. No. 3. P. 190-198.
  • 16. Posiadała, B. & Waryś, P. Modelowanie i badania symulacyjne ruchu żurawia leśnego w cyklu roboczym. Modelowanie inżynierskie. 2011. Vol. 10. No. 41. P. 331-338. [In Polish: Modeling and simulation research of forest crane in operating cycle. Engineering modeling].
  • 17. Rauch, A. & Singhose, W. & Fujioka, D. & Jones, T. Tip-over stability analysis of mobile boom cranes with swinging payloads. ASME. Journal of Dynamic Systems, Measurement and Control. Transactions of the ASME. 2013. Vol. 135. No. 3. P. 031008–031008-6.
  • 18. Sochacki, W. The dynamic stability of a laboratory model of a truck crane. Thin-Walled Structures. 2007. Vol. 45. No. 10-11. P. 927-930.
  • 19. Urbaś, A. Analysis of flexibility of the support and its influence on dynamics of the grab crane. Latin American Journal of Solids and Structures. 2013. Vol.10. No. 1. P. 109-121.
  • 20. Jeng, S.L. & Yang, C.F. & Chieng, W.C. Outrigger force measure for mobile crane safety based on linear programming optimization. Mechanics Based Design of Structures and Machines. 2010. No. 38. P. 145-170.
  • 21. Suwaj, S. & Mączyński, A. Sprawdzanie stateczności żurawia w trakcie realizacji ruchów roboczych. Transport przemysłowy. 2002. Vol. 4. No. 10. P. 26-29. [In Polish: Stability inspection of a crane during working movements. Industrial Transport].
  • 22. Arena, A. & Casalotti, A. & Lacarbonara, W. & Cartmell, M.P. Dynamics of container cranes: three-dimensional modeling, full-scale experiments, and identification. International Journal of Mechanical Sciences. 2015. No. 93, P. 8-21.
  • 23. Lee, J.S. & Shim, J.J. & Han, D.S. & Han, G.J. & Lee, K.S. An experimental analysis of the effect of wind load on the stability of a container crane. Journal of Mechanical Science and Technology. 2007. Vol. 21. No. 3. P. 448-454.
  • 24. Lee, J.S. & Kang, J.H. Wind load on a container crane located in atmospheric boundary layers. Journal of wind engineering and industrial. 2008. Vol. 96, No. 2. P. 193-208.
  • 25. Arena, A. & Casalotti, A. & Lacarbonara, W. & Cartmell, M.P. Three-dimensional modeling of container cranes. In: Proc. of the Int. Design Engineering Technical Conf. and Computers and Information in Engineering Conf. ASME. 2013. P. 1-9.
  • 26. ISO 4305:2014 - Mobile cranes - Determination of stability.
  • 27. PN-ISO 4304:1998. Żurawie samojezdne, Wyznaczanie stateczności. Warszawa: Polski Komitet Normalizacyjny. [In Polish: Self-propelled cranes. Determination of stability. Warsaw: Polish Committee of Standardization].
  • 28. PN-ISO 4305:1998, Dźwignice. Żurawie samojezdne. Wyznaczanie stateczności. Warszawa: Polski Komitet Normalizacyjny. [In Polish: Cranes. Self-propelled cranes. Determination of stability. Warsaw: Polish Committee of Standardization].
  • 29. Rupar, D. & Hladnik, J. & Jerman, B. Loader crane inertial forces. FME Transactions. 2016. Vol. 44. No. 3. P. 291-297.
  • 30. Majewski, M. & Kacalak, W. Conceptual design of innovative speech interfaces with augmented reality and interactive systems for controlling loader cranes. Advances in Intelligent Systems and Computing. 2016. Vol. 464. P. 237-247.
  • 31. Majewski, M. & Kacalak, W. Intelligent speech interaction of devices and human operators. Advances in Intelligent Systems and Computing. 2016. Vol. 465. P. 471-482.
  • 32. Majewski, M. & Kacalak, W. Human-machine speech-based interfaces with augmented reality and interactive systems for controlling mobile cranes. Lecture Notes in Computer Science. 2016. Vol. 9812. P. 89-98.
  • 33. Majewski, M. & Kacalak, W. Intelligent speech-based interactive communication between mobile cranes and their human operators. Lecture Notes in Computer Science. 2016. Vol. 9887. P. 523-530.
  • 34. Majewski, M. & Kacalak, W. Innovative intelligent interaction systems of loader cranes and their human operators. Advances in Intelligent Systems and Computing. 2017. Vol. 573. P. 474-485.
  • 35. Majewski, M. & Kacalak, W. Smart control of lifting devices using patterns and antipatterns. Advances in Intelligent Systems and Computing. 2017. Vol. 573. P. 486-493.
  • 36. Majewski, M. & Kacalak, W. & Budniak, Z. & Pajor, M. Interactive control systems for mobile cranes. Advances in Intelligent Systems and Computing. 2017. Vol. 661. P. 10-19.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c27b70f6-f69c-4564-9fa4-03dd1b70253f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.