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Abstract
Hybrid constructions include heterogeneous materials with different behaviors under load. The aim is to achieve a so-called 
synergistic effect when the advantages of particular structural elements complement each other in a unified system.

The building constructions considered in the research include high-strength steel cables, fiberglass rods, and flexible poly-
mer membranes. The membrane is attached to the rods which have been elastically bent from the initially straight shape into 
an arch-like form.

Structural materials inevitably deteriorate during a long operational period. The present study focuses on detecting material 
deterioration using Artificial Neural Networks (ANNs), which belong to the scope of intelligent techniques for data analysis. 
Appropriate ANN structures and required features are proposed. A semi-supervised learning strategy is used. The approach 
allows the training of the networks with normal data only derived from the construction without defects. Material degradation 
is detected by the level of reconstruction error produced by the network given the input data. 

The work contributes to the field of structural health monitoring of hybrid building constructions. It provides the opportu-
nity to detect material deterioration given the forces in particular structural elements.
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1. Introduction

Hybrid building constructions consist of heterogeneous 
materials which behave differently under external load. 
Along with ordinary structural steel, they include high-
strength cables, fiberglass rods, and flexible polymer 
membranes. The aim is to achieve a so-called synergistic 
effect when advantages of particular structural elements 
complement each other in the unified system, and every 
structural member behaves in the most efficient way.

The scope of hybrid constructions encompasses 
the roofs and facades of permanent buildings, as well 
as temporary canopies for exhibitions, recreation areas, 
points of retail, and construction sites.

Structural materials inevitably deteriorate 
during their operational period. The deterioration re-
sults in aesthetic, functional, and technical defects 
(Sommerville, 2007; Wang et al., 2015). The first 
type of defects results in poor visual performance 
of the building. Functional defects reduce structur-
al serviceability and bring about the growth of ex-
penditures. The last type of defects diminishes the 
load-bearing capacity of structural elements. It re-
sults in decreasing the reliability of the whole con-
struction. 

Technical defects affect the ultimate limit state of 
the hybrid buildings. They include the degradation of fi-
berglass polymer, creep of the membrane and the cables, 
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as well as the emergence of tiny slits or tearing in the 
membrane surface. The slits are accidental and initially 
hidden from view (Gipperich et al., 2004). They, how-
ever, result in stress concentration and tend to quickly 
propagate throughout the whole membrane surface.

Fiberglass polymers lose their strength and be-
come brittle. Initial E-modulus gradually alters with 
time. It should be taken into account in the design stage 
of hybrid constructions which are intended for long-
term use in permanent buildings.

Creep of the membrane and the cables results in 
the elongation of structural members and stress relax-
ation. The flexible elements of the construction which 
need to retain tension under external loads may slack 
due to creep, and the structure becomes out-of-order. 

Creep also gives rise to rainwater ponding and 
excessive movement of the under-stressed membrane. 
The ponding starts a  so-called ‘chain reaction’ of in-
creasing local loads until the structural collapse. Ex-
cessive movement or ‘flapping’ entails noise generation 
and stimulates fatigue wear and tear of the membrane 
(Bridgens et al., 2004).

The present study focuses on the detection of ma-
terial deterioration using Artificial Neural Networks 
(ANNs), which belong to the scope of intelligent tech-
niques for data analysis. A construction without any de-
fects is considered ‘normal’ while a deteriorated one is 
called ‘anomalous’. The task for the ANN is to provide 
results for distinguishing between these classes.

ANNs consist of a  number of nodes intercon-
nected with links. The nodes, like biological neurons, 
non-linear transform the input signal into the output 
one. A link, or a synapse, transmits the signal between 
two neurons using an appropriate weight coefficient 
simulating ‘agitation and inhibition’ in a biological ner-
vous system. 

Having adjusted the weight coefficients, the ANN 
is able to process fuzzy data in solving complex prob-
lems for which appropriate mathematical models have 
not been developed.

ANNs are used for structural health monitoring 
(Pozo et al., 2017) and material behavior simulation 

(Colasante & Gosling, 2016). They are successfully ap-
plied in the field of anomaly detection. ANNs are an ap-
propriate tool for separating deteriorated constructions 
from normal ones.

Supervised, unsupervised, and semi-supervised 
approaches are used for detecting anomalies by the 
ANNs (Chandola et al., 2009). 

An unsupervised approach needs no labeled 
data but requires the anomalous cases to be rare. 
Frequent anomalies are misclassified as normal. In 
addition, the unsupervised detection system having 
no given data with ‘right answers’ results in a high 
false alarm rate.

A  supervised machine learning strategy re-
quires labeled instances for all the deterioration cas-
es to be provided. This approach, however, suffers 
from a  huge manifold of eventual anomalous sce-
narios, which are hard to be taken into account in 
the design stage.

A  semi-supervised approach (Hodge & Austin, 
2004), in contrast to the supervised one, only requires 
normal cases. Normal data are derived from the con-
struction without defects. Material degradation is de-
tected by the level of reconstruction error produced by 
the trained model given the input data. 

2. The hybrid building constructions

The hybrid construction considered in the research be-
longs to bending-active structures which are shaped 
into arch-like forms by means of elastic deformation 
of their primary bearer rods (Lienhard et al., 2013; Van 
Mele et al., 2013).

The construction consists of a  framework and 
a flexible membrane shell (Fig. 1) (Chesnokov et al., 
2017, 2019). The bottom chord of the framework in-
cludes steel cables and hinged spreaders. The spreaders 
are of ordinary structural steel with Young’s modulus 
Es = 260 GPa and flexural strength Rs = 240 MPa. The 
cables are composed of high-strength wire ropes with 
Ecab = 130 GPa and Rcab = 700 MPa. 

Fig. 1. The hybrid construction: a) axonometric view; b) bearer framework; 1 – bottom chord; 2 – flexible membrane shell; 
3 – fiberglass rod; 4 – diagonal cable; 5 – hoop cable; 6, 7 – spreaders; 8 – tie

a) b)
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The top chord is made of fiberglass rods with ini-
tial Young’s modulus Efb = 24 GPa and the strength 
Rfb  =  185 MPa. The rods are bent from the initial-
ly straight shape into arch-like form by means of 
pre-stressing of the steel cables. The initial span of the 
frame, equal to 12 m, is reduced by 0.35 m, while the 
top chord camber rises up to 1.15 m.

The membrane which belongs to architectural 
fabrics is attached to the fiberglass rods. It is an inher-
ent part of the construction for providing the cladding 
and preventing buckling of the rods. The membrane 
consists of flexible threads and a polymer coating. Its 
warp-to-weft stiffness is 1200 × 800 kN/m.

3. Method

3.1. External loads simulation

External loads are applied in the Z-direction (Fig. 2). 
Nonuniform impacts are simulated by the reduction 
factor kr, kr ∈ [0, ..., 1]: 

Qr = kf ⋅ Qf� (1)

where Qf and Qr are full and reduced loads [kN/m2].

   

Fig. 2. External loads: a) plan view of the load zones;  
b) view along the line A

An external load is associated with a  local coor-
dinate system (Xloc, Yloc, Z) that rotates about the global 
Z-axis by an angle ϕ. Each position of the local coordi-
nate system (Xloc, Yloc, Z) simulates non-uniform impact 
centered on a particular rib of the construction.

3.2. Simulation of the material deterioration 

The following deterioration scenarios are considered 
(Fig. 3):

	– ageing of the fiberglass rods (all the elements and 
a single one);

	– slackening of the catenary cables (all the catena-
ries and the ones which belong to a quarter of the 
surface);

	– slackening of the polymer membrane (the whole 
surface and a quarter of it); 

	– membrane tearing.

Fig. 3. Material deterioration considered: a) ageing of 
fiberglass rods; b) slackening of the catenary cables; 
c) slackening of the polymer membrane; d) membrane tearing 

(local slits in sectors 1–4 of the surface)

Static analysis of the constructions is performed 
in the software EASY-2020 using the non-linear Finite 
Element technique.

The ageing of fiberglass rods is introduced into the 
structural model by using long-term E-modulus instead 
of short-term values. Cable and membrane slackening 
due to creep is taken into account by means of multi-
plying the initial element lengths by the factor:

kεc 
= 1 + εc� (2)

where εc is the creep relative elongation: εc = 0.6% for the 
polymer membrane and εc = 0.05% for the steel cables.

b)

a)

b)

a)

d)

c)
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The polymer membrane is simulated in the 
EASY-2020 software by a  number of links forming 
a mesh-like surface. The surface with particular links 
removed is a model of the membrane tearing adopted 
in the present study.

Membrane tearing in any sector, denoted in 
Fig.  3d, is considered. Sector numbers are indicated 
in the local coordinate system  (Xloc, Yloc, Z) , which is 
associated with load zones (Fig. 2): the first sector is 
situated in the fully loaded area of the membrane, while 
the last sector is in the center of the reduced load.

3.3. The feature selection

A  finite-element simulation of the hybrid construc-
tions in EASY-2020 software shows the influence of 
material deterioration on the structural behavior of the 
frame. In-plane bending moments Mv in the fiberglass 
rods of the top chord (moments in the vertical plane) 
are susceptible to ageing of the material and slackening 
of structural elements, while tearing of the membrane 
brings about out-plane moment variation Mw (moments 
in the horizontal plane), Figures 4 and 5.

Fig. 4. Graphs of in-plane bending moments Mv and axial forces N in the top chord of the construction given the deterioration 
scenario: a) ageing of fiberglass rods (minimum moments in nodes A of all the ribs); b) polymer membrane slackening on 
the whole surface (maximum moments in nodes A); c) typical graphs of minimum axial forces N in the fiberglass rods;  
d) cross section view of the structural frame (nodes A and Mv diagrams are shown); 1 – reference state (no material deterioration); 

2 – deteriorated state; 3 – separation line; 4 – trend line

b)

a)

d)

c)
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In the case of the ageing of the fiberglass rods, 
both maximum and minimum values of bending mo-
ments Mv can be linearly separated from the reference 
state. For cable and membrane slackening cases, either 
maximum or minimum Mv-values are linearly sepa-
rable. Thus, extreme values of in-plane bending mo-
ments  Mv allow detecting material deterioration in the 
construction given the external load Qf. The magnitude 
of Qf is defined by the axial force N in the top chord 
because N-graphs are close to the trend line (Fig. 4c).

Fig. 5. Diagrams of out-of-plane bending moments Mw in the 
fiberglass rods of the top chord: 1 – moments brought about 

by the slit; 2 – load-induced moments 

Membrane damage (tearing or slit) causes trian-
gular-like moments Mw in the horizontal plane (Fig.  5). 
Non-uniform external loads also result in Mw-diagrams 
which may be confused with tearing-induced moments. In 
order to detect the membrane damage, the moments Mw are 
taken in all the fiberglass rods (nodes B, marked in Fig. 5). It 
allows to reliably separate the case of the membrane tearing 
from complexly loaded but not deteriorated construction. 

3.4. Semi-supervised machine learning 
for detecting material deterioration 

The approach used in the present study for detecting 
material deterioration includes developing machine 
learning models in the form of artificial neural net-
works (ANNs). The ANN provides the resultant vec-
tor Y

→
 = (y1, ..., yi, ..., yN0

)T given the input data-vector  
X
→

 = (x1, ..., xi, ..., xN0
)T (Fig. 6). The vector X

→
 contains 

structural parameters xi (features) which are susceptible 
to the influence of possible deterioration cases. In the 
present study, axial forces and bending moments in the 
fiberglass rods of the top chord of the construction are 
included in the X

→
-vectors.

Fig. 6. Schematic diagram of the ANN

The hybrid construction is classified using condi-
tion (3) as follows: if the discrepancy δmax (4) exceeds 
the threshold ∆max (5) the construction is considered 
damaged, otherwise, it is classified as normal.

δmax > ∆max� (3)

The discrepancy for a particular hybrid construc-
tion (a sample) is obtained as follows:

δmax = max(|yi – xi|)� (4)

where xi and yi are the components of X
→

 and Y
→

 vectors, 
i ∈ [1, ..., N0].

The threshold ∆max is the maximum discrepancy 
achieved by the trained ANN over all the samples taken 
from the training dataset Ω

→

tr = (X
→

1, ..., X
→

ntr
)T:

∆max = max(δmax,t) � (5)

where: t – the number of a training sample, t ∈ [1, ..., ntr]; 
ntr – the size of the training dataset.

Estimation of the overall quality of the consid-
ered classification approach is performed using testing  
Ω
→

test = (X
→

1, ..., X
→

ntest
)T, and operational Ω

→

op = (X
→

1, ..., X
→

nop
)T, 

datasets after the process of training of the ANN is 
completed. 

The testing dataset Ω
→

test, as well as the training 
one Ω

→

tr, are obtained for so called reference state of 
the construction having no damage of its structural 
members. The operational dataset Ω

→

op is obtained giv-
en particular deterioration or a  material degradation 
case. 

The classification is correct in the following 
cases:

	– the condition (3) meets for the operational samples;
	– the condition (3) fails for the testing samples. 

The proportion of misclassified cases is estimated 
by the following error metrics:

� p
p

test

n
n

� �100% � (6)

�n
n

op

n
n

� �100%

�
(7)

where: ξp, ξn – false positive and false negative rates [%]; 
np – the number of samples, belonging to the testing 
dataset  Ω

→

test, for which the condition (3) satisfies; 
nn – the number of samples, belonging to the operation-
al dataset  Ω

→

op, for which the condition (3) fails; ntest, nop – the sizes of the testing and operational datasets, 
respectively.
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The false-positive metric estimates the so-called 
‘false alarm’ rate, when good construction is misclas-
sified as damaged. The false-negative metric estimates 
the proportion of really deteriorated samples is misclas-
sified as normal.

3.5. Artificial neural networks 

Feedforward artificial neural network (ANN) or 
multilayer perceptron has proven its efficiency in 
a number of engineering problems (Horr et al., 2003; 
Kaveh & Dehkordi, 2003). It is adopted in the pres-
ent study to build the models used for the classifica-
tion of the hybrid construction into normal or dete-
riorated classes.

ANN consists of successively arranged layers 
(Fig. 6). The general structure of the network may 
be represented as follows: N0 – N1, ..., Nh – Nh+1, 
where  Nj is the number of processing units (artifi-
cial neurons) belonging to the layer j, j ∈ [0, ..., (h 
+ 1)], where h is the number of hidden layers in the 
network.

Each neuron ij ∈ [1, ..., Nj] of the layer j performs 
the following transformation using an activation func-
tion fj (Fig. 7):

vij
 = fj(uij

) � (8)

where uij
 and vij

 are the components of the incoming 
vector U

→

j which is received by the layer, and the re-
sultant vector V

→

j which is generated by the layer, re-
spectively.

Vectors V
→

j, except the one which belongs to the 
output layer of the ANN, are supplemented with the 
bias term v0 = 1.0 (Fig. 7).

Fig. 7. Data flow between adjacent layers of the ANN

Linear activation function is used for the input and 
the output layers of the ANN: 

fj(u) = u,  if  j = 0 or j = h + 1� (9)

Sigmoid-type activation function is applied for the 
hidden layers:

f u
ej u( ) �

�
�� �

2

1
1� , if j ∈ [1, ..., h] � (10)

where β-factor is adopted equal to 3.0.
Sigmoid function (10) consists of two distinct do-

mains: quasi-linear central region and, so-called, satu-
rated regions at the ends (Fig. 8). The function, being 
differentiable, can be used in gradient optimization pro-
cedures. The sigmoid function allows the outputs of the 
hidden layers to be kept in the range [–1, ..., +1], pre-
venting the divergence of the iteration process needed 
to obtain the parameters of the network.

Fig. 8. Sigmoid-type activation function, β = 3.0

The input layer of the ANN (j = 0) receives 
a normalized data-vector U

→

0 = X
→

norm. Normalization is the  
mapping of the given X

→
-vector into the dimensionless 

range xnorm,i ∈ [0.0, ..., 1.0]. The output and the hidden 
layers ( j ∈ [1, ..., (h + 1)]) receive weighted results gen-
erated by the previous layers (Fig. 7):

U
→

j = [W (j)] ⋅ V
→

j–1 � (11)

where W (j) is an [Nj × (Nj–1 + 1)]-matrix of weight factors.
The output layer of the ANN (j = h + 1) generates 

the resultant Y
→

-vector:

Y
→

 = V
→

h+1 � (12)

The matrices W (j) are initialized with random values 
in the range

 
[ , , ] /− −2

1
 ...  +2 N j  (Thimm & Fiesler, 

1995). During the training process, they are adjusted by 
means of the gradient descent optimization technique:

w w
E

w
j
i k

j
i k j

t
j
i k

j j

j

, ,
,

� � �
�
�

�

�
(13)

where: w jij,k – the element of the matrix W (j), ij ∈ [1, ..., Nj], 
k ∈ [0, ..., Nj–1]; Et – the mean squared error (MSE) of 
a sample; ηj – the learning rate for the layer j (Osovskiy, 
2002):

� j
jN

�
��

1
11 �

(14)
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The mean squared error for a  particular training 
sample t ∈ [1, ..., ntr] is obtained as follows:

E
N

y xt i i
i

N

� �
�
�1

0

2

1

0

( )
�

(15)

where: xi – the components of  Xt

→
-vector from the train-

ing dataset Ω
→

tr; yi – the components of the resultant vec-
tor Y

→
 given the vector Xt

→
.

The samples for adjusting the weights (13) are 
picked from the training dataset Ω

→

tr in random order. 
When the dataset is exhausted, the total average error 
is calculated for the current training epoch as follows:

E
n

E
tr

t
t

ntr

�
�
�1

1 �
(16)

The training process is considered finished when 
the variation of the error E becomes less than the limit 
value ζlim:

|ζ| < ζlim � (17)

where: ζlim – adopted equal to 5%; ζ – the variation:

� �
�

��E E
E

e e

e

1 100%
�

(18)

where Ee and Ee–1 are the errors (16) on the current and 
on the previous epochs, respectively.

The training is also wrapped if the variation ζ be-
comes either steadily negative or oscillating.

3.6. The ANN structure

Material deterioration cases considered in the present 
study form two separate groups which need different 
feature sets to be detected. The first group includes fi-
berglass top chord ageing, as well as catenary cables 
and polymer membrane slackening. The corresponding 
input vector consists of three features:

XI

→
 = [Nmin, Mv,max, Mv,min]

T� (19)

Membrane damages compose the second group of 
material deterioration cases. The feature set needed for 
achieving appropriate accuracy includes bending mo-
ments Mw in all the rods of the top chord. Considering 
eight ribs in the present study, the input vector is writ-
ten as follows:

X
→

II = [Mw,1, ..., Mw,8]
T

�
 (20)

Due to the substantial heterogeneity of these 
groups, two separate networks are adopted for the prob-
lem of deterioration detection:

	– ANN-I for detecting material ageing and slacken-
ing;

	– ANN-II for membrane damage detection.

A similar approach was successfully implemented 
by Hansen and Salamon (1990), where neural network 
ensembles were used for dealing with large and com-
plex problems. In comparison to a  single ANN with 
a lot of inputs and large weight matrices, particular net-
works are much easy to be developed and trained to 
provide good results for a small cost.

Considering, that X
→

 and Y
→

 vectors are of the same 
length and adopting three symmetrical hidden layers 
(h = 3), the general ANN’s structure becomes the fol-
lowing N0 – N1 – N2 – N1 – N0 (Fig. 9).

Fig. 9. General structure of the ANN

The size of the first hidden layer of the ANNs 
adopted is three times as large as the input layer 
N1 = 3  ⋅ N0. The remaining hyperparameter to be de-
fined is the middle layer size N2. It allows to investigate 
so-called “bottle-neck” shape of the ANN, which is in-
tended for extracting hidden features and reducing the 
noise in the input data (Luo & Nagarajan, 2018).

4. Results and discussion

4.1. Artificial neural networks implementation

The artificial neural networks ANN-I  and ANN-II are 
implemented using general-purpose computational 
software MathCad. The graphs of misclassified cases 
given the number of neurons in the middle layer N2 are 
in Figure 10.

In the case of detection of material ageing and 
slackening (Fig. 10a), the growth of the middle layer 
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size results in fast attenuation of the false-negative rate 
and steady increase of the false-positive rate. It can 
be explained by the over-fitting of the ANN-I, which 
provides smaller discrepancies δmax (4) for the training 
samples, resulting in less threshold values ∆max (5). So, 
three neurons (N2 = 3) are adopted for the middle layer 
of the ANN-I, because further increase results in dimin-
ishing of quality of the classification.

The network ANN-II in case of an insufficient 
number of neurons (e.g., N2 = 1 or N2 = 3, Fig. 10b) 
can not store all the data provided. It results in high 
discrepancies δmax  (4) both for the testing and the op-
erational datasets. The network’s capacity increases 
with the growth of the middle layer size. The problem 
of over-fitting, however, arises for the large network. 
Seven neurons (N2 = 7) are adopted for the ANN-II, 

because further growth of the middle layer results in 
negligible diminishing of the false-negative rate. The 
false-positive rate, however, and especially the com-
putational time for training the network increase sub-
stantially.

Thus, the final structures of the networks 
ANN-I and ANN-II are the following: 3 – 9 – 3 – 9 – 3 
and 8 – 24 – 7 – 24 – 8. The discrepancies δmax (4) for 
the training datasets are shown in Figure 11. 

The threshold needed to separate normal and de-
teriorated constructions using ANN-I  is ∆max,I = 0.076, 
while for ANN-II it is ∆max,II = 0.029 (Fig. 11). The da-
ta-points are considered normal below these values, 
while the regions above the thresholds are anomalous. 
An examined construction with anomalous parameters 
is considered deteriorated.

Fig. 11. Discrepancies δmax, obtained for the trained networks using the training samples: a) network ANN-I; b) network ANN-II

b)

a)

b)a)

Fig. 10. Graphs of misclassified cases versus the number of neurons in the middle layer N2: a) ANN-I; b) ANN-II; 1 – false-
positive rate (6), ξp; 2–4 – false-negative rates (7), ξn; 2 – polymer membrane slackening case on a quarter of the surface;  

3 – membrane tearing case in sector 1; 4 – membrane tearing case in sector 4

4.2. Detection of material deterioration 

The discrepancies (4) obtained for testing (normal) Ω
→

test 
and operational (deteriorated) Ω

→

op datasets are shown in 
figures 12 and 13.

According to condition (3), the networks provide 
results for reliable classification of not deteriorated 
constructions into the normal class. The misclassifica-
tion (false positive rate ξp) is 6.7% for the ANN-I and 
5.4% for the ANN-II (Figs. 12a and 13a).
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Fig. 12. Discrepancies (4) obtained using the trained network ANN-I: a) δmax-values for the testing samples (no material 
deterioration); b)–d) δmax-values for the operational samples: b) fiberglass top chord ageing (all the elements and a single one); 

c), d) polymer membrane slackening on the whole surface and on a quarter of the surface, respectively

The top chord ageing, as well as catenary cables 
and membrane slackening, are uniquely detected us-
ing the condition (3) applied for the results provided 
by the ANN-I: the misclassification (false negative 
rate ξn) is zero for all the listed types of the deteriora-
tion (Figs. 12b–12d).

Fiberglass top chord ageing is reliably detected 
due to large values of the discrepancies δmax, which 
far exceed the threshold ∆max,I. The discrepancies δmax  
obtained for membrane and cable slackening are very 
close to each other and can’t be visually distinguished 
(graphs for polymer membrane slackening are only in-
dicated in Figures 12c and 12d).

In the case of slackening of the whole surface 
(Fig. 12c), uniformly distributed external loads (reduc-
tion coefficient kr → 1.0) decrease the classification reli-
ability because the discrepancies δmax (denoted by square 
signs) tend to the threshold. Non-uniformly distributed 
external loads (kr → 0.0), in turn, may potentially cause 

a misclassification error in cases of cable or membrane 
slackening on a quarter of the surface (Fig. 12d).

Membrane tearing situated in the first sector of the 
surface (sector numbers in the local coordinate system 
(Xloc, Yloc, Z) are in Figure 3) is detected correctly using 
the ANN-II. The damage prediction reliability increases 
in accordance with the growth of external load value Qf 
and decreases with the growth of external load unifor-
mity (kr → 1.0) (Fig. 13b).

The remaining sectors shifted from the fully load-
ed area of the membrane to the reduced load zone, are 
harder to be classified into damaged and normal types. 
The false-negative rate ξn is 0.4%, 3.3% and 10.4% for 
the sectors 2–4, respectively (Figs. 13c–13e).

The samples misclassified using ANN-II belong 
to non-uniformly distributed external loads (kr → 0.0). 
The growth of the classification error indicates that 
a low level of external load poorly influences the reli-
ability of the damage detection.

b)

a)

d)

c)
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Fig. 13. Discrepancies (4) obtained using the trained network ANN-II: a) δmax-values for the testing samples (no material 
deterioration); b)–e) δmax-values for the operational samples (tearing in sectors 1–4 of the membrane, respectively, Fig. 3d)

5. Conclusions

1.	 The problem of detection of material deterioration 
in hybrid building constructions is considered. Ar-
tificial Neural Networks (ANNs) and semi-super-
vised learning approaches are used. The approach is 
in the classification of the construction into normal 
and anomalous (deteriorated) classes judging by the 
discrepancy between a  given vector of structural 
parameters (features) and the resultant vector gen-
erated by the trained ANN.

2.	 Training the network and obtaining the classifica-
tion threshold only need normal data which are col-

lected from the construction without any defects or 
deterioration.

3.	 False-positive and false-negative error metrics are 
used to assess the quality of the classification.

4.	 Appropriate ANN structures and required features 
are proposed for two different types of deteriora-
tion cases: material ageing and slackening (net- 
work  ANN-I), as well as membrane tearing 
(network ANN-II). The sizes of the middle layers 
of both ANNs are adopted using the error metrics 
considered.
Both the networks provide results for the reliable 
classification of not deteriorated constructions into 

b)

a)

d)

c)

e)
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the normal class. The misclassification (false posi-
tive rate ξp) does not exceed 6.7%.
The top chord ageing, as well as catenary cables 
and membrane slackening, are uniquely detected 
using the ANN-I. The misclassification (false-neg-
ative rate ξn ) is zero for all the types of deterio-
ration.
Membrane damages (the local slits) are detected 
correctly in most cases using the ANN-II. The mis-
classification depends on the slit location relatively 
to the position of non-uniform external load. Tran-
sitioning the slit from the fully loaded to not loaded 
area of the membrane results in the following grow-
ing trend of the false-negative rate  ξn: 0.0%, 0.4%, 
3.3%, and 10.4%. Considering that the misclassi-

fied cases correspond to a low level of external load, 
they are much less influential on the survivability of 
the construction than correctly detected slits in the 
fully loaded membrane sectors.

5.	 The work contributes to the structural health moni-
toring of hybrid building constructions. It provides 
a possibility to detect material deterioration given 
the forces in particular structural elements. The next 
step of the research is the transition from numerical-
ly obtained forces to real gauging equipment indi-
cations collected in real-time from a real construc-
tion. The problems of noise in the sensors’ data and 
the optimum arrangement of the gauging devices 
remain to be tackled and should be considered of 
primary importance.
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