Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Optymalizacja symulacji systemów przenośników poprzez integrację cyfrowego cienia dla zwiększenia wydajności procesu montażu
Języki publikacji
Abstrakty
In today's highly competitive industrial environment, continuous improvement of efficiency and optimization of processes is crucial. This paper presents an approach to the optimization of conveyor systems that uses the concept of a digital shadow. A digital shadow, as an exact digital replica of a physical conveyor system, enables detailed simulation and analysis of real operational data, providing a basis for in-depth analysis and identification of areas for improvement. The aim of this approach is not only to improve the understanding of the dynamics and performance of existing conveyor systems, but also to increase the overall efficiency through predictive simulations and optimization algorithms. In this work, we demonstrate how the integration of a digital shadow into the simulation process can contribute to a better reaction to changes in the production environment, to the reduction of downtime and to the optimization of production flows. Our methodology combines data collection / analysis, and enables the creation of accurate and flexible models of conveyor systems. These models are then used in simulations that help identify optimal settings for different production scenarios and predict potential problems before they occur. The results of applying our approach on a test laboratory line show a significant improvement in efficiency and a reduction in operating costs. This study provides important insights and practical guidelines for engineers and production managers focused on the use of digital shadow to increase the efficiency of conveyor systems. It also contributes to the development of intelligent production technologies in the era of Industry 4.0.
W dzisiejszym wysoce konkurencyjnym środowisku przemysłowym kluczowe znaczenie ma ciągła poprawa wydajności i optymalizacja procesów. W artykule przedstawiono podejście do optymalizacji systemów przenośnikowych wykorzystujące koncepcję cyfrowego cienia. Cyfrowy cień, jako dokładna cyfrowa replika fizycznego systemu przenośników, umożliwia szczegółową symulację i analizę rzeczywistych danych eksploatacyjnych, dając podstawę do dogłębnej analizy i identyfikacji obszarów wymagających poprawy. Celem tego podejścia jest nie tylko lepsze zrozumienie dynamiki i wydajności istniejących systemów przenośników, ale także zwiększenie ogólnej wydajności poprzez symulacje predykcyjne i algorytmy optymalizacyjne. W tej pracy pokazujemy, jak włączenie cienia cyfrowego do procesu symulacji może przyczynić się do lepszej reakcji na zmiany w środowisku produkcyjnym, ograniczenia przestojów i optymalizacji przepływów produkcyjnych. Nasza metodologia łączy zbieranie/analizę danych oraz umożliwia tworzenie dokładnych i elastycznych modeli systemów przenośnikowych. Modele te są następnie wykorzystywane w symulacjach, które pomagają zidentyfikować optymalne ustawienia dla różnych scenariuszy produkcji i przewidzieć potencjalne problemy, zanim one wystąpią. Wyniki zastosowania naszego podejścia na linii laboratorium badawczego wskazują na znaczną poprawę wydajności i redukcję kosztów operacyjnych. Niniejsze badanie dostarcza ważnych spostrzeżeń i praktycznych wskazówek dla inżynierów i kierowników produkcji skupiających się na wykorzystaniu cyfrowego cienia w celu zwiększenia wydajności systemów przenośników. Przyczynia się także do rozwoju inteligentnych technologii produkcyjnych w dobie Przemysłu 4.0.
Wydawca
Czasopismo
Rocznik
Tom
Strony
16--22
Opis fizyczny
Bibliogr. 21 poz., il. kolor., fot.
Twórcy
autor
- Department of Industrial Engineering and Informatics, Technical University of Košice, Faculty of Manufacturing Technologies with a seat in Prešov, Bayerova 1, 080 01 Prešov, Slovak Republic
autor
- Department of Industrial Engineering and Informatics, Technical University of Košice, Faculty of Manufacturing Technologies with a seat in Prešov, Bayerova 1, 080 01 Prešov, Slovak Republic
autor
- Department of Logistics and Transport Economics, Faculty of Maritime Technology and Transport, West Pomeranian University of Technology in Szczecin, 17, Piastów Ave., 70-310, Szczecin, Poland
autor
- Pro2Future GmbH, Inffeldgasse 25f, 8010 Graz, Austria
Bibliografia
- Antosz K., Pasko L., Gola A, (2019) The Use of Intelligent Systems to Support the Decision-Making Process in Lean Maintenance Management, IFAC PapersOnLine 52-10, pp. 148-153. https://doi.org/10.1016/j.ifacol.2019.10.005
- Graczyk-Tarasiuk, J., Karyono, K., & Karyono, K. (2022). The framework for the supplier qualification system for the world leader home appliances industry. Technologia I Automatyzacja Montażu (Assembly Techniques and Technologies), 116(2), 41-52. https://doi.org/10.7862/tiam.2022.2.6
- Husar, J., Knapcikova, L., Balog, M. (2019). Implementation of Material Flow Simulation as a Learning Tool. In: Ivanov, V., et al. Advances in Design, Simulation and Manufacturing. DSMIE 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-93587-4_4
- Kassen, S., Tammen, H., Zarte, M., Pechmann, A. (2021) Concept and Case Study for a Generic Simulation as a Digital Shadow to Be Used for Production Optimisation. Processes, 9, 1362. https://doi.org/10.3390/pr9081362
- Kawa, A., Fuks, K., Januszewski, P. (2016). Computer Simulation as a Research Method in Management Sciences, Studia Oeconomica Posnaniensia, no. 1, t. 4: 109-127.
- Kluz, R., Antosz, K. (2019). Simulation of Fliexible Manufacturing Systems as an Element of Education Towards Industry 4,0. In: 6th International Scientific Technical Conference on Advances in Manufacturing II (Manufacturing): 332-341. https://doi.org/10.1007/978-3-030-18715-6_28.
- Kolny, D., Kaczmar-Kolny, E., & Dulina, Ľuboslav. (2023). Modeling and simulation of the furniture manufacturing and assembly process in the arena simulation software . Technologia i Automatyzacja Montażu (Assembly Techniques and Technologies), 119(1), 13-22. https://doi.org/10.7862/tiam.2023.1.2
- Kovbasiuk, K., Demčák, J., Husár, J., Hošovsky, A., Hladký, V. (2023). A Digital Twin for Remote Learning: A Case Study. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Rauch, E., Piteľ, J. (eds) Advances in Design, Simulation and Manufacturing VI. DSMIE 2023. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-32767-4_36
- Lazar, I., Husar, J. (2012). Validation of the serviceability of the manufacturing system using simulation. J. Effi. Responsib. Educ. Sci. 5(4), 252-261. https://doi.org/10.7160/eriesj.2012.050407
- Li, Q., Hua, Qy., Feng, J., Niu, W., Wang, H., Zhong, J. (2011). Design and Implementation of Interactive Digital Shadow Simulation System. In: Ma, M. (eds) Communication Systems and Information Technology. Lecture Notes in Electrical Engineering, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21762-3_24
- Malopolski, W., Wiercioch, A. (2018). An Approach to Modeling and Simulation of a Complex Conveyor System Using Delmia Quest-A Case Study. In: Hamrol, A., Ciszak, O., Legutko, S., Jurczyk, M. (eds) Advances in Manufacturing. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-68619-6_58
- Mikušová, N., Stopka, O., Stopková, M. & Opettová, E. (2019). Use of simulation by modelling of conveyor belt contact forces. Open Engineering, 9(1), 709-715. https://doi.org/10.1515/eng-2019-0070
- Pathak, S. D., Luitel, A., Singh, S. & Pandey, R. (2021) Second Generation Voltage Conveyor II based Shadow Filter, 2021 2nd International Conference for Emerging Technology (INCET), Belagavi, India, 2021, pp. 1-5, https://doi.org/10.1109/INCET51464.2021.9456370.
- Răileanu, S., Borangiu, T., Ivănescu, N., Morariu, O. & Anton, F. (2020). Integrating the Digital Twin of a Shop Floor Conveyor in the Manufacturing Control System. In: Borangiu, T., Trentesaux, D., Leitão, P., Giret Boggino, A., Botti, V. (eds) Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future. SOHOMA 2019. Studies in Computational Intelligence, vol 853. Springer, Cham. https://doi.org/10.1007/978-3-030-27477-1_10
- Ruzarovsky, R., Holubek, R., Delgado Sobrino, D. R., & Janíček, M. (2018). The Simulation of Conveyor Control System Using the Virtual Commissioning and Virtual Reality. Advances in Science and Technology Research Journal, 12(4), 164-171. https://doi.org/10.12913/22998624/100349
- Salawu, G., Bright, G. & Onunka, Ch. (2020). Modelling and simulation of a conveyor belt system for optimal productivity, International Journal of Mechanical Engineering and Technology (IJMET), 11(1), pp. 115-121. https://doi.org/10.34218/IJMET.11.1.2020.012
- Tri handoyo, I., Subali, M. (2010). Conveyor control system based on high low at89s51 microcontroller-based products. pp.1-14.
- Trojanowska, J., Husár, J., Hrehova, S. & Knapčíková, L. (2023) Poka Yoke in Smart Production Systems with Pick-to-Light Implementation to Increase Efficiency. Appl. Sci. 2023, 13, 11715. https://doi.org/10.3390/app132111715
- Van Vianen, T., Ottjes, J. & Lodewijks, G. (2016) Belt conveyor network design using simulation. J Simulation 10, 157-165. https://doi.org/10.1057/jos.2014.38
- Wang, T., Cheng, J., Yang, Y., Esposito, C., Snoussi, H. & Tao, F. (2022). Adaptive Optimization Method in Digital Twin Conveyor Systems via Range-Inspection Control, in IEEE Transactions on Automation Science and Engineering, 19 (2), pp. 1296-1304. https://doi.org/10.1109/TASE.2020. 3043393.
- Židek, K., Hladký, V., Pitel’, J., Demčák, J., Hošovský, A. & Lazorík, P. (2021). SMART Production System with Full Digitalization for Assembly and Inspection in Concept of Industry 4.0. In: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 382. Springer, Cham. https://doi.org/10.1007/978-3-030-78459-1_13
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c272c547-eef6-4746-a234-8619f7a5d93b