PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wearable Biosensor: How to Improve the Efficacy in Data Transmission in Respiratory Monitoring System?

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Respiratory rate measurement is important under different types of health issues. The need for technological developments for measuring respiratory rate has become imperative for healthcare professionals. The paper presents an approach to respiratory monitoring, with the aim to improve the accuracy and efficacy of the data monitored. We use multiple types of sensors on various locations on the body to continuously transmit real-time data, which is processed to calculate the respiration rate. Variations in the respiration rate will help us identify the current health condition of the patient also for diagnosis and further medical treatment. The software tools such as Keil μVision IDE, Mbed Studio IDE, Energia IDE are used to compile and build the system architecture and display information. EasyEDA is used to provide pin map details and complete architecture information.
Rocznik
Strony
25--32
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Electronics and Communication Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
  • Department of Electronics and Communication Engineering at Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
Bibliografia
  • [1] Sumit Majumder; Tapas Mondal; M. Jamal Deen, (2017), Wearable Sensors for Remote Health Monitoring’, Sensors (Basel), 17(1): 130. https://doi.org/10.3390/s17010130.
  • [2] Andreoni G., Perego P., Standoli C. (2015), ‘Wearable monitoring of elderly in an ecologic setting: The SMARTA project.’ 2nd International conference on Sensors and Applications, November 2015.
  • [3] Pantelopoulos A.; Bourbakis N. (2010), ‘A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis’ IEEE Trans. Syst. Man Cybern. C, 40, 1-12.
  • [4] Al-Khalidi FQ, Saatchi R, Burke D, Elphick H, Tan S.(2010), ‘Respiration rate monitoring methods: a review’. Pediatr Pulmonol., 46(6):523-529. https://doi.org/10.1002/ppul.21416. Epub 2011 Jan 31. PMID: 21560260.
  • [5] Santacroce, L.,Charitos, I.A., Ballini, A., Inchingolo, F., Luperto, P.,De Nitto, E.,Topi, S.,(2020), ‘The Human Respiratory System and its Microbiome at a Glimpse’. Biology, 9, 318. https://doi.org/10.3390/biology9100318.
  • [6] Vanegas E, Igual R, Plaza I., (2020), ‘Sensing Systems for Respiration Monitoring: A Technical Systematic Review’, Sensors. 20(18):5446. https://doi.org/10.3390/s20185446.
  • [7] A. Pantelopoulos and N. G. Bourbakis, (2010), ‘A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis,’ IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 40, no. 1, pp. 1-12, https://doi.org/10.1109/TSMCC.2009.2032660.
  • [8] Chu, M., Nguyen, T., Pandey, V. et al. (2019), ‘Respiration rate and volume measurements using wearable strain sensors’, npj Digital Med 2, 8. https://doi.org/10.1038/s41746-019-0083-3.
  • [9] Majumder, Sumit et al.(2017), ‘Wearable Sensors for Remote Health Monitoring.’, Sensors (Basel, Switzerland) vol. 17,1 130. https://doi.org/10.3390/s17010130.
  • [10] Andreozzi E, Centracchio J, Punzo V, Esposito D, Polley C, Gargiulo GD, Bifulco P. (2021), ‘Respiration Monitoring via Force cardiography Sensors’. Sensors (Basel).21(12):3996. https://doi.org/10.3390/s21123996 PMID: 34207899; PMCID: PMC8228286.
  • [11] Luis, Juan Aponte et al.(2014), ‘Design and implementation of a smart sensor for respiratory rate monitoring’, Sensors (Basel, Switzerland) vol. 14,2 3019-32. https://doi.org/10.3390/s140203019,
  • [12] Vanegas, Erik, Igual, Raul, Plaza, Inmaculada , (2019), ‘Piezoresistive Breathing Sensing System with 3D Printed Wearable Casin’, Journal of Sensors, (4):1-19 . https://doi.org/10.1155/2019/2431731https://doi.org/10.1155/2019/2431731.
  • [13] Cesareo, Ambra et al., (2018), ‘Assessment of Breathing Parameters Using an Inertial Measurement Unit (IMU)-Based System’, Sensors (Basel, Switzerland) vol. 19,1 88. 27 Dec. 2018, https://doi.org/10.3390/s19010088.
  • [14] R.A. Roth, (2010),‘Introduction to Respiratory Toxicology, Editor(s): Charlene A. McQueen, Comprehensive Toxicology (Second Edition), Elsevier, Pages 3-12, ISBN 9780080468846, https://doi.org/10.1016/B978-0-08-046884-6.00901-5.
  • [15] Yamamoto A, Nakamoto H, Bessho Y, Watanabe Y, Oki Y, Ono K, Fujimoto Y, Terada T, Ishikawa A.(2019), ‘Monitoring respiratory rates with a wearable system using a stretchable strain sensor during moderate exercise’, Med Biol Eng Comput.,57(12):2741-2756. https://doi.org/10.1007/s11517-019-02062-2 Epub 2019 Nov 17. PMID: 31734768.
  • [16] Massaroni C, Nicolò A, Lo Presti D, Sacchetti M, Silvestri S, Schena E.,(2019) ‘Contact-Based Methods for Measuring Respiratory Rate’. Sensors (Basel).;19(4):908. https://doi.org/10.3390/s19040908 PMID: 30795595; PMCID: PMC6413190.
  • [17] Bartula M, Tigges T, Muehlsteff J., (2013), ‘Camera-based system for contactless monitoring of respiration’. Annual Int Conf IEEE Eng Med Biol Soc. 2013; 2013:2672-5. https://doi.org/10.1109/EMBC.2013.6610090 PMID: 24110277.
  • [18] Folke, M., Cernerud, L., Ekström, M. et al. (2003)., ‘Critical review of non-invasive respiratory monitoring in medical care’. Med. Biol. Eng. Comput. 41, 377-383. https://doi.org/10.1007/BF02348078.
  • [19] Klocke, Robert A., Burri, Peter H., Heath, Donald Albert, Weibel, Ewald R., Elliott, David H., Cherniack, Neil S., Siebens, Arthur A. and Beers, Michael F. (2020), ‘Human respiratory system’. Encyclopedia Britannica, https://www.britannica.com/science/human-respiratory-system. Accessed 14 August 2021.
  • [20] Islam MS, Paul G, Ong HX, Young PM, Gu YT, Saha SC.(2020), ‘A Review of Respiratory Anatomical Development, Air Flow Characterization and Particle Deposition’, Int J Environ Res Public Health.;17(2):380. https://doi.org/10.3390/ijerph17020380 PMID: 31935991; PMCID: PMC7014067.
  • [21] Lehtonen E, Teuho J, Koskinen J, Jafari Tadi M, Klén R, Siekkinen R, Rives Gambin J, Vasankari T, Saraste A.(2021), ‘ A Respiratory Motion Estimation Method Based on Inertial Measurement Units for Gated Positron Emission Tomography’. Sensors (Basel).,21(12):3983. https://doi.org/10.3390/s21123983 PMID: 34207864; PMCID: PMC8228885.
  • [22] Romano C, Schena E, Silvestri S, Massaroni C., (2021), ‘Non-Contact Respiratory Monitoring Using an RGB Camera for Real-World Applications’. Sensors (Basel),21(15):5126. https://doi.org/10.3390/s21155126 PMID: 34372363; PMCID: PMC8347288.
  • [23] Ali Al-Naji, Ali J. Al-Askery, Sadik Kamel Gharghan and Javaan Chahl, (2019), ‘A System for Monitoring Breathing Activity Using an Ultrasonic Radar Detection with Low Power Consumption’, J. Sens. Actuator Netw., 8(2), 32; https://doi.org/10.3390/jsan8020032.
  • [24] Gagandeep kour, Mohammad Rouman, Geetha. M, (2018), ‘Respiratory Monitoring System Using Thermistor’ International Journal of Pure and Applied Mathematics Vol 119, No. 12, 11567-11575.
  • [25] Kamišalić A, Fister I, Turkanović M, Karakatič S., (2018), ‘Sensors and Functionalities of Non-Invasive Wrist-Wearable Devices: A Review’, Sensors. 18(6):1714. https://doi.org/10.3390/s18061714.
  • [26] B Sumathy et al, (2021), ‘Wearable noninvasive Health monitoring device for elderly using IoT’, IOP Conf. Ser.: Mater. Sci. Eng. 1012 012011 https://doi.org/10.1088/1757-899X/1012/1/012011.
  • [27] P. S. Akram, M. Ramesha., S. A. S. Valiveti, S. Sohail and K. T. S. S. Rao, (2021), ‘IoT based Remote Patient Health Monitoring system’, 7th International Conference on Advanced Computing and Communication Systems (ICACCS), pp. 1519-1524, https://doi.org/10.1109/ICACCS51430.2021.9441874.
  • [28] Li, Shih-Hong et al.(2017), ‘Design of Wearable Breathing Sound Monitoring System for Real-Time Wheeze Detection’, Sensors (Basel, Switzerland) vol. 17,1 171, https://doi.org/10.3390/s17010171 .
  • [29] Li, Shih-Hong et al.(2017), ‘Design of Wearable Breathing Sound Monitoring System for Real-Time Wheeze Detection’, Sensors (Basel, Switzerland) vol. 17,1 171, https://doi.org/10.3390/s17010171.
  • [30] Bergese, Sergio D et al. (2017), ‘Multicenter Study Validating Accuracy of a Continuous Respiratory Rate Measurement Derived From Pulse Oximetry: A Comparison With Capnography.’, Anesthesia and analgesia vol. 124,4 1153-1159. https://doi.org/10.1213/ANE.0000000000001852.
  • [31] G. Karacocuk et al.,(2019), ‘Inertial Sensor-Based Respiration Analysis’, IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 11, pp. 4268-4275., https://doi.org/10.1109/TIM.2018.2889363.
  • [32] Taisa Daiana da Costa, Maria de Fatima Fernandes Vara, Camila Santos Cristino, Tyene Zoraski Zanella, Guilherme Nunes Nogueira Neto and Percy Nohama, (2019). ‘Breathing Monitoring and Pattern Recognition with Wearable Sensors’, Wearable Devices - the Big Wave of Innovation, Noushin Nasiri, IntechOpen, https://doi.org/10.5772/intechopen.85460.
  • [33] Qi, Wen, and Andrea Aliverti. (2020), ‘A Multimodal Wearable System for Continuous and Real-Time Breathing Pattern Monitoring During Daily Activity’, IEEE journal of biomedical and health informatics vol. 24,8 2199-2207. https://doi.org/10.1109/JBHI.2019.2963048.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c271b060-949f-4069-b791-81dde435724e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.