Tytuł artykułu
Identyfikatory
Warianty tytułu
Wpływ różnych form informacji zwrotnej na dokładność generowania siły i na zdolność do jej różnicowania w prostych ruchach cyklicznych kończyną górną i dolną
Języki publikacji
Abstrakty
Background: This study aimed to assess the accuracy of force production by the limbs and to identify the ability to differentiate this force during a progressively increasing value, in response to different types of extrinsic feedback. Material and methods: The study involved nineteen healthy and physically active boys and girls aged 12.82±0.34 years, body height 157.05±9.02 cm, and body mass 44.89±7.89 kg. The tasks were to perform a series of right and left upper limb pulls and pushes with increasing force using the levers of the kinesthesiometer and a series of lower limb presses on the pedal of the kinesthesiometer. The tasks were completed in three feedback conditions: no feedback, sound feedback, verbal feedback, and the retention test was used. To assess the level of accuracy of force production, the novel index of force production accuracy (FPAIndex) was used. Results: The outcomes expressing the value of FPAIndex on the point scale indicated that the highest level of kinesthetic differentiation was observed when no feedback was provided (1.17 points), and the lowest kinesthetic differentiation was recorded when verbal feedback was provided (3.33 points). However, they were devoid of statistical value. The repeated-measures analysis of variance ANOVA with the Tukey post-hoc test (HSD) indicated a significant lowest (p=0.0402) level of accuracy of FPA (x̄36.12±18.29 [N]) only for the act of left lower limb press (LL PRESS) in the retention test, while no feedback was provided to the subjects. Conclusions: The results of this study showed that verbal and sound extrinsic feedback did not affect the accuracy of force production by the upper and lower limbs and the ability to differentiate this force in simple movements among children.
Cel: Celem badań była ocena dokładności generowania siły przez kończyny oraz identyfikacja zdolności do jej różnicowania podczas powtarzania ze stopniowo wzrastającą wartością, w odpowiedzi na różnego rodzaju zewnętrzpochodne informacje zwrotne. Materiał i Metody: W badaniach uczestniczyło dziewiętnaście zdrowych i aktywnych fizycznie chłopców i dziewcząt w wieku 12.82±0.34 lat, o wysokości ciała 157.05±9.02 cm i masie ciała 44.89±7.89 kg. Zadania polegały na wykonaniu kolejno z rosnącą siłą serii pociągnięć i pchnięć dźwigni kinestezjometru prawą i lewą kończyną górną oraz na wykonaniu serii nacisków kończynami dolnymi na pedał kinestezjometru. Zadania wykonywano pod wpływem: dźwiękowej informacji zwrotnej o różnym natężeniu, werbalnej informacji zwrotnej o różnej sile głosu oraz bez informacji zwrotnej. Wykonano także test retencyjny. Do oceny poziomu dokładności generowanej siły wykorzystano autorski wskaźnik dokładności generowanej siły (FPAIndex). Wyniki: Wyniki odzwierciedlające wartość FPAIndex w skali punktowej wskazały że najwyższy poziom różnicowania kinestetycznego zaobserwowano w przypadku próby pozbawionej informacji zwrotnej (1.17 pkt), a najniższy w próbie z przekazem werbalnej informacji zwrotnej (3.33 pkt). Były one jednak pozbawione wartości statystycznej. Analiza wariancji ANOVA z porównaniem wielokrotnym, wykonanym testem post-hoc Tukeya (HSD) wykazała istotnie najniższy (p=0.0402) poziom FPA (x̄36.12±18.29 [N]), tylko dla czynności naciskania lewą kończyną dolną (LL PRESS) w teście retencyjnym, gdy badanym nie dostarczano informacji zwrotnej. Wnioski: Wyniki badań pokazały, że werbalne i dźwiękowe zewnątrzpochodne informacje zwrotne nie mają wpływu na dokładność wytwarzania siły kończynami górnymi i dolnymi a także na zdolność jej różnicowania podczas wykonywania ruchów prostych wśród dzieci.
Czasopismo
Rocznik
Tom
Strony
39--56
Opis fizyczny
Bibliogr. 77 poz., rys., tab.
Twórcy
autor
- Department of Swimming, Faculty of Physical Education and Sport Science, University School of Physical Education in Wroclaw, Poland
autor
- Department of Applied Mathematics, Faculty of Pure and Applied Mathematics, Wroclaw University of Science and Technology, Poland
autor
- Department of Swimming, Faculty of Physical Education and Sport Science, University School of Physical Education in Wroclaw, Poland
autor
- Department of Swimming, Faculty of Physical Education and Sport Science, University School of Physical Education in Wroclaw, Poland
autor
- Department of Swimming, Faculty of Physical Education and Sport Science, University School of Physical Education in Wroclaw, Poland
Bibliografia
- 1. Schmidt RA, Lee TD. Motor learning and performance. A situation-based learning approach. 5th edition. Champaign, Illinois: Human Kinetics; 2013;
- 2. Magill RA. Augmented feedback in skill acquisition. In: Singer RN, Murphey M, Tennant LK. Eds. Handbook on Research in Sport Psychology. Macmillan: New York; 1993: 193-212;
- 3. Latasch M. Fundamentals of motor control. 1st Edition. San Diego, USA: Academic Press, Elsevier; 2012;
- 4. Lee T, Swinnen S, Serrien J. Cognitive effort and motor learning. Quest 1994; 46: 328-344;
- 5. Young DE, Schmidt RA. Augmented kinematic feedback for motor learning. Journal of Motor Behavior 1992; 24(3): 261-273;
- 6. More KG, Franks IM. Analysis and modification of verbal coaching behaviour: the usefulness of a data-driven intervention strategy. Journal of Sports Sciences 1996; 14: 523-543;
- 7. Landin D. The role of verbal cues in skill learning. Quest 1996; 46: 299-313;
- 8. Chiviacowsky S, Wulf G. Feedback after good trials enhances learning. Research Quarterly for Exercise and Sport 2007; 78: 40-47, DOI: 10.1080/02701367.2007.10599402;
- 9. Sharma DA, Chevidikunnan MF, Khan FR, Gaowgzeh RA. Effectiveness of knowledge of result and knowledge of performance in the learning of a skilled motor activity by healthy young adults. Journal of Physical Therapy Science 2016; 28(5): 1482-1486 DOI: 10.1589/jpts.28.1482;
- 10. Takeuchi T. Auditory information in playing tennis. Perceptual and Motor Skills 1993; 76: 1323-1328;
- 11. Sigrist R, Rauter G, Riener R, Wolf P. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review. Psychonomic Bulletin & Review 2013; 20: 21-53 DOI: 10.3758/s13423-012-0333-8;
- 12. Proteau L. Visual afferent information dominates other sources of afferent information during mixed practice of a video-aiming task. Experimental Brain Research 2005; 161: 441-456;
- 13. Pérez P, Llana S, Brizuela G, Encarnación A. Effects of three feedback conditions on aerobic swim speeds. Journal of Sports Science and Medicine 2009; 8: 30-36;
- 14. Kiemel T, Oie KS, Jeka JJ. Multisensory Fusion and the stochastic structure of postural sway. Biological Cybernetics 2002; 87: 262-277;
- 15. Soto-Faraco S, Kingstone A, Spence C. Multisensory contributions to the perception of motion. Neuropsychologia 2003; 41: 1847-1862 DOI: 10.1016/S0028-3932(03)00185-4;
- 16. Calvert GA, Spence C, Stein BE. Eds. The Handbook of multisensory processes. Cambridge, MA, USA: MIT Press; 2004;
- 17. Enoka RM. Neuromechanics of Human Movement. 5th Edition. Urbana, IL: Human Kinetisc; 2002;
- 18. Zatsiorsky VM. Kinematics of human motion. Champaign, Illinois: Human Kinetics; 1998;
- 19. Rucci JA, Tomporowski PD. Three types of kinematic feedback and the execution of the hang power clean. Journal of Strength & Conditioning Research 2010; 24(3): 771-778 DOI: 10.1519/JSC.0b013e3181cbab96;
- 20. Carp JS, Wolpaw JR. Motor neurons and spinal control of movement. eLS 2010, DOI: 10.1002/9780470015902.a0000156.pub2;
- 21. Dounskaia N. Control of human limb movements: The leading joint hypothesis and its practical applications. Exercise and Sport Sciences Reviews 2010; 38(4), 201-208, DOI https://doi.org/10.1097/JES.0b013e3181f45194;
- 22. Proske U. Gandevia CS. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiological Reviews 2012; 92: 1651-1697;
- 23. Meinel K, Schnabel G. Bewegungslehre - Sportmotorik: Abriß einer Theorie der sportlichen Motorik unter pädagogischem Aspekt. Berlin: Sportverlag; 1998 German [Kinematics - motor skills: Schema of theory of motor skills at pedagogical aspect];
- 24. Zatoń M, Błacha R, Jastrzębska A, Słonina K. Repeatability of pressure force during elbow flexion and extension before and after exercise. Human Movement 2009; 10(2): 137-143;
- 25. Błacha R. Powtarzalność napięć izometrycznych mięśni jako miara zdolności różnicowania kinestetycznego. Studia i Monografie AWF we Wrocławiu. Wrocław: AWF Wrocław; 2013: 112 Polish [Repeatability of isometric muscle tension as a way to measure kinesthetic differentiation ability];
- 26. Ernst MO, Banks MS. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 2002; 415(6870): 429-433;
- 27. Pinzona D, Vegab R, Sanchez YP, Zheng B. Skill learning from kinesthetic feedback. American Journal of Surgery 2017; 214(4): 721-725;
- 28. Rejman M, Klarowicz A, Zatoń K. An evaluation of kinesthetic differentiation ability in monofin swimmers. Human Movement 2012; 13(1): 8-15 DOI: 10.2478/v10038-011-0048-0;
- 29. Docherty CL, Arnold BL. Force sense deficits in functionally unstable ankles. Journal of Orthopaedic Research 2008; 26(11): 1489-1493, DOI: 10.1002/jor.20682;
- 30. Lee-Valkov PM, Aaron DH, Eladoumikdachi F, Thornby J, Netscher DT. Measuring normal hand dexterity values in normal 3-, 4-, and 5-year-old children and their relationship with grip and pinch strength. Journal of Hand Therapy 2003; 16(1): 22-28 DOI: 10.1016/s0894-1130(03)80020-0;
- 31. Mustafa K, Furmanek MP, Knapik A, Bacik B, Juras G. The Impact of the Swedish Massage on the Kinesthetic Differentiation in Healthy Individuals. International Journal of Therapeutic Massage & Bodywork 2015; 8(1): 2-11;
- 32. Klarowicz A, Zatoń K, Albiński P, Rejman M. Zmiany zdolności różnicowania kinestetycznego w trakcie realizacji programu pływania zdrowotnego u studentów AWF we Wrocławiu. Annales Universitatis Mariae Curie-Skłodowska Sect.D Med 2006b; 60, 16, 3, (291), 258-261 Polish [Changes in kinesthetic differentiation during program of fitness swimming for students];
- 33. Błacha R, Zatoń K, Piwowarczyk P, Jastrzębska A, Szczepan S. Repeatability of force production as a measure of kinesthetic sense in seagoing sailors and recreational sailors. Human Movement 2019; 20(2): 57-63, DOI:10.5114/hm.2019.83219;
- 34. Szczepan S, Blacha R, Brożek T, Zaton K. Seasonal changes in force production accuracy as a measure of kinesthesia in motorcyclists. Human Movement 2020; 21(1): 15-21 DOI: https://doi.org/10.5114/hm.2020.88149;
- 35. Zatoń K, Klarowicz A. Metoda oceny poziomu dokładności różnicowania kinestetycznego u dzieci w młodszym wieku szkolnym. In: Bartoszewicz R., Koszczyc T., Nowak A. Eds. Kontrola i ocena w wychowaniu fizycznym: dydaktyka wychowania fizycznego. Wrocławskie Towarzystwo Naukowe: Wrocław; 2003b: 347-352 Polish [Evaluation method of kinaesthetic differentiation precision in young school-age children];
- 36. Zatoń M, Zatoń K, Zygadło A. Zmiany zdolności różnicowania kinestetycznego w procesie uczenia się narciarstwa. Antropomotoryka 2008b; 18, 44, 37-47 Polish [Changes in kinaesthetic differentiation capacity in the ski learning process];
- 37. Klarowicz A, Zatoń K, Albiński P. Differences in conscious reception of stimuli from water environment in school children. In: Zatoń K, Jaszczak M. Eds. Science in Swimming II. AWF, Wrocław; 2008: 16-22;
- 38. Hebisz R, Błacha R, Hebisz P, Szczepan S. The relationship between the gross efficiency and the ability to repeat the given pressure force in trained cyclists. Human Movement 2019; 20(1): 48-54, DOI: https://doi.org/10.5114/hm.2019.79217;
- 39. Jastrzębska A., Zatoń M., Ochmann B. Physical performance and kinesthetic differentiation ability. Polish Journal of Environmental Studies 2006; 15, 2B, 1150-1153;
- 40. Lundy-Ekman L. Neuroscience: Fundamentals for rehabilitation. 3rd edition. St Louis, Missouri: Saunders Elsevier; 2007, 110-112;
- 41. Cho NMY, Giorgi HP, Liu KPY, Bae YH, Chung LMY, Kaewkaen K, Fong SSM. Proprioception and Flexibility Profiles of Elite Synchronized Swimmers. Perceptual and Motor Skills 2017; 124(6): 1151-1163 DOI: 10.1177/0031512517724965;
- 42. Gandevia SC, McCloskey DI, Burke D. Kinaesthetic signals and muscle contraction. Trends in Neurosciences 1992; 15: 62-65;
- 43. Reiman BL, Lephart SM. The sensorimotor system, part I: The physiologic basis of functional joint stability. Journal of Athletic Training 2002; 37: 71-79;
- 44. Colyer R. Tactile sensitivity and swimming ability: exteroceptive perceptionof aquatic stimuli by three levels of college male swimmers. Unpublished doctoral dissertation, Bloomington, Indiana: Indiana University; 1975;
- 45. Colwin CM. Breakthrough Swimming, Champaign, Illinois: Human Kinetics; 2002;
- 46. Albiński P, Zatoń K, Klarowicz A. Changes in the level of kinesthetic differentiation in the training process among swimmers between 14 and 18 years of age. Polish Journal of Environmental Studies 2006; 15, (5B, 2): 646-650;
- 47. Jastrzębska A, Ochmann B. Differences in level of kinaesthetic sense between swimmers and non-swimmers. In: Zatoń K, Jaszczak M. Eds. Science in Swimming II. AWF, Wrocław; 2008: 9-15;
- 48. Lees A, Asai T, Andersen TB, Nunome H, Sterzing T. The biomechanics of kicking in soccer: a review. Journal of Sports Sciences 2010; 28(8): 805-17 DOI: 10.1080/02640414.2010.481305;
- 49. Linthorne N, Heys M, Reynolds T, Eckardt N. Attaching mass to the upper arm can increase throw distance in a modified javelin throw. Acta of Bioengineering and Biomechanics 2020; 22(2): 55-67;
- 50. Bańkosz Z. The kinesthetic differentiation ability of table tennis players. Human Movement 2012; 13(1): 16-21 DOI:10.2478/v10038-011-0049-z;
- 51. Sheehan WB, Bower RG, Watsford ML. Physical Determinants of Golf Swing Performance: A Review. The Journal of Strength & Conditioning Research 2019; 20. DOI: 10.1519/JSC.0000000000003411;
- 52. Virmavirta M, Perttunen J, Komi PV. EMG activities and plantar pressures during ski jumping take-off on three different sized hills. Journal of Electromyography and Kinesiology 2001; 11: 141-147 DOI: 10.1016/s1050-6411(00)00047-x;
- 53. Hébert-Losier K, Supej M, Holmberg HC. Biomechanical factors influencing the performance of elite Alpine ski racers. Sports Medicine 2014; 44(4): 519-33 DOI: 10.1007/s40279-013-0132-z;
- 54. Minogue J, Jones MG. Haptics in education: exploring an untapped sensory modality. Review of Educational Research 2006; 76(3): 317-348 DOI: https://doi.org/10.3102/00346543076003317;
- 55. Klarowicz A, Zatoń K, Albiński P. Differences in conscious reception of stimuli from water environment in school children participating in rehabilitation swimming program. Polish Journal of Environmental Studies 2006; 15, 5B, 2: 643-645;
- 56. Ebert A, Deller M, Steffen D, Heintz M. “Where Did I Put That?” - Effectiveness of kinesthetic memory in immersive virtual environments. In: Stephanidis C. Eds. Universal Access in Human-Computer Interaction. Applications and Services. UAHCI 2009. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg; 2009; 5616: 179-188.DOI: https://doi.org/10.1007/978-3-642-02713-0_19;
- 57. Zatoń K, Klarowicz A. Mowa jako czynnik uświadamiający wrażliwość kinestetyczną w procesie nauczania-uczenia się czynności ruchowych w pływaniu. Człowiek i Ruch 2003; 2(8): 45-53 Polish [Speech as a factor favouring kinaesthetic awareness in the process of learning swimming skills];
- 58. Klarowicz A, Groffik B, Rejman M. The modulation of verbal information as a factor stimulating conscious differentiation of kinaesthetic sensations in the aquatic environment. Baltic Journal of Health and Physical Activity 2011; 3, 4, 311-324 DOI: 10.2478/v10131-011-0031-3;
- 59. Zatoń K, Szczepan S. The impact of immediate verbal feedback on the improvement of swimming technique. Journal of Human Kinetics 2014; 41: 129-137 DOI: 10.2478/hukin-2014-0042;
- 60. Zatoń K, Cześniewicz I, Szczepan S. The effect of verbal feedback on biomechanical performance during swimming ergometry. Human Movement 2018; 19(1): 3-9 DOI: https://doi.org/10.5114/hm.2018.73606;
- 61. Salkind NJ. Encyclopedia of Research Design. Thousand Oaks, California: Sage; 2010;
- 62. Zatoń M, Błacha R. Sposób pomiaru siły nacisku kończyn człowieka i urządzenie do pomiaru siły nacisku kończyn człowieka. Bulletin of the Patent Office; 2008, 4: 16, Polish [The method of measuring the pressure of human limbs and the device for measuring the pressure of human limbs];
- 63. Błacha R, Jastrzębska A. Accuracy of force repeatability in relation to its value and the subjects' sex. Human Movement 2017; 18, 2, 30-37 DOI: 10.1515/humo-2017-0017;
- 64. Jastrzębska A, Błacha R. Effect of Exhaustive Incremental Treadmill Effort on Force Generation Repeatability in Biathletes. Journal of Motor Behavior, 2014; 46, 4: 239-245 DOI: 10.1080/00222895.2014.893979;
- 65. Seel NM. Eds. Retention Test. Encyclopedia of the Sciences of Learning. Boston, USA: Springer; 2012, DOI: 10.1007/978-1-4419-1428-6_2379;
- 66. Schmidt RA, Lee TD, Winstein CJ, Wulf G, Zelaznik HN. Motor Control and Learning: A Behavioral Emphasis. 6th edition. Champaign, Illinois: Human Kinetics; 2018;
- 67. Thoma JR, Nelson JK, Silverman SJ. Research methods in physical activity. 7th edition. Champaign, Illinois: Human Kinetics; 2015: 166-167;
- 68. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods 2007; 39(2): 175-191, DOI: https://doi.org/10.3758/BF03193146;
- 69. Adams JA. A closed-loop theory of motor learning. Journal of Motor Behavior 1971; 3(2): 111-149, DOI: 10.1080/00222895.1971.10734898;
- 70. Proteau L, Carnahan H. What causes specificity of practice in a manual aiming movement: vision dominance or transformation errors? Journal of Motor Behavior 2001; 33(3): 226-234;
- 71. Mackrous I, Proteau L. Is visual-based, online control of manual-aiming movements disturbed when adapting to new movement dynamics? Vision Research 2015; 110(Pt B): 223-232;
- 72. Latash ML, Levin MF, Scholz JP, Schöner G. Motor control theories and their applications. Medicina (Kaunas) 2010; 46(6), 382-392;
- 73. McIntyre AK, Proske U, Rawson JA. Cortical projection of afferent information from tendon organs in the cat. Journal of Physiology 1984; 354: 395-406;
- 74. Keele SW, Posner MI. Processing of visual feedback in rapid movements. Journal of Experimental Psychology 1968; 77(1): 155-158, https://doi.org/10.1037/h0025754;
- 75. Ehrlenspiel F, Wei K, Sternad D. Open-loop, closed-loop and compensatory control: performance improvement under pressure in a rhythmic task. Experimental Brain Research 2010; 201(4): 729-741, DOI:10.1007/s00221-009-2087-8;
- 76. Schmidt RA, Wulf G. Continuous concurrent feedback degrades skill learning: implications for training and simulation. Human Factors 1997; 39(4), 509-525;
- 77. Gritsenko V, Krouchev NI, Kalaska JF. Afferent input, efference copy, signal noise, and biases in perception of joint angle during active versus passive elbow movements. Journal of Neurophysiology 2007; 98: 1140-1154.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c270cb87-915a-4e4d-92d6-0e3b7644ab7f