PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Utilization of telecommunication optical routes to power fiber-optic polarization sensors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A single-mode telecommunication optical route can be used for reliable power supplies of a remote non-electric temperature fiber-optic polarization sensor, but the optical route, due to many physical factors, affects an immediate state of polarization during the transmission. This negative phenomenon changes the sensitivity of the sensor itself. The thesis proposes two main approaches to solving that problem. The first approach is based on the suitable connection of a depolarizer and linear polarizers. The second approach is based on signal interference, which takes place in a polarization-maintaining fiber coupler. This article also evaluates the advantages and disadvantages of the two approaches and graphically demonstrates the functionality of the fiber-optic sensor, which was tested by applying a container with water of different temperatures. A big advantage of this type of sensor is that it is not necessary to have components, that are dependent on electricity, near the monitored place, where there may be no access to electricity, or the place may be sensitive to an electric charge. Paper demonstrates the possibility of successfully powering the non-electric sensor via a classical optical route.
Czasopismo
Rocznik
Strony
565--574
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • University of Defence, Faculty of Military Technology, Department of Electrical Engineering, Kounicova 65, Brno-střed, Czech Republic, 662 10
  • University of Defence, Faculty of Military Technology, Department of Electrical Engineering, Kounicova 65, Brno-střed, Czech Republic, 662 10
Bibliografia
  • [1] SHARMA M., BALASUBRAMANIAN S., SUNDARAM S., UNNI S.N., Polarimetric evaluation of bulk samples and unstained sections of colon tissue, [In] Frontiers in Optics / Laser Science, OSA Technical Digest, 2020, paper JTu1B.15, DOI: 10.1364/FIO.2020.JTu1B.15.
  • [2] BARRETT T. J., EVANS W., GADGE A., BHUMBRA S., SLEEGERS S., SHAH R., FEKETE J., ORUCEVIC F., KRUGER P., An environmental monitoring network for quantum gas experiments and devices, arXiv:2101.12726 [quant-ph], DOI: 10.48550/arXiv.2101.12726.
  • [3] BARCIK P., LEITGEB E., HUDCOVA L., Optical wireless communication transmitter with a refraction beam shaper, [In] 2014 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP), IEEE, 2014, pp. 1044–1048, DOI: 10.1109/CSNDSP.2014.6923983.
  • [4] BARCIK P., HUDCOVA L., Measurement of spatial coherence of light propagating in a turbulent atmosphere, Radioengineering 22(1), 2013, pp. 341–345.
  • [5] KUPINSKI M., BRADLEY CH., DINER D., XU F., CHIPMAN R., Angle of linear polarization images of outdoor scenes (Erratum), Optical Engineering 60(10), 2021, 109801, DOI: 10.1117/1.OE.60.10.109801.
  • [6] MARTIN A., LEVIANDIER L. JR., BOFFETY M., SAUER H., DUPONT J., ROUSSEL S., LE TEURNIER B., GOUDAIL F., NOGUIER V., POTET P., VANNIER N., GOGUILLON P., Active polarimetric imager for detection of static and moving manufactured objects in natural environment, Proc. SPIE 11866, Electro-Optical and Infrared Systems: Technology and Applications XVIII and Electro-Optical Remote Sensing XV, 118660L (12 September 2021), DOI: 10.1117/12.2596135.
  • [7] SIFTA R., MUNSTER P., SYSEL P., HORVATH T., NOVOTNY V., KRAJSA O., FILKA M., Distributed fiber-optic sensor for detection and localization of acoustic vibrations, Metrology and Measurement Systems 22(1), 2015, pp. 111–118, DOI: 10.1515/mms-2015-0009.
  • [8] HARRINGTON D.M., SUEOKA S., WHITE A.J., EIGENBROT A., SCHAD T., Polarization modeling and predictions for Daniel K. Inouye Solar Telescope, part 7: preliminary NCSP system calibration and model fitting, Journal of Astronomical Telescopes, Instruments, and Systems 7(1), 2021, 018004, DOI: 10.1117/1.JATIS.7.1.018004.
  • [9] YUXIN ZHAO, GUOCHEN WANG, BOYA ZHANG, FEI YU, ZHUO WANG, Design and simulation analysis of fiber optic current sensor using orbital angular momentum beam, Proc. SPIE 11901, Advanced Sensor Systems and Applications XI, 1190106 (9 October 2021), DOI: 10.1117/12.2602398.
  • [10] MUNSTER P., VOJTECH J., SYSEL P., SIFTA R., NOVOTNY V., HORVATH T., SIMA S. FILKA M., Φ-OTDR signal amplification, Proc. SPIE 9506, Optical Sensors 2015, 950606 (5 May 2015), DOI: 10.1117/12.2179026.
  • [11] MUANENDA Y., OTON C.J., FARALLI S., DI PASQUALE F., A cost-effective distributed acoustic sensor using a commercial off-the-shelf DFB laser and direct detection phase-OTDR, IEEE Photonics Journal 8(1), 2016, 6800210, DOI: 10.1109/JPHOT.2015.2508427.
  • [12] KYSELAK M., DVORAK F., MASCHKE J., VLCEK C., Phase response of polarization-maintaining optical fiber to temperature changes, Optica Applicata 47(4), 2017, pp. 635–649.
  • [13] KYSELÁK M., VLČEK Č., MASCHKE J., DVOŘÁK F., Optical fibers with high birefringence as a sensor element, [In] 2016 6th International Conference on Electronics Information and Emergency Communication (ICEIEC ), IEEE, 2016, pp. 190–193, DOI: 10.1109/ICEIEC.2016.7589717.
  • [14] KYSELÁK M., VYLEŽICH Z., VÁVRA J., GRENAR D., SLAVÍČEK K., The long fiber optic paths to power the thermal field disturbance sensor, Proc. SPIE 11682, Optical Components and Materials XVIII, 116821A (5 March 2021), DOI: 10.1117/12.2575832.
  • [15] KYSELAK M., DVORAK F., MASCHKE J., VLCEK C., Phase shift response of birefringent PANDA fiber after the end of thermal exposure during recovery to ambient temperature, Optical and Quantum Electronics 52, 2020, 422, DOI: 10.1007/s11082-020-02539-7.
  • [16] KYSELAK M., DVORAK F., VLCEK C., Measurement techniques for determining the polarization division multiplexing tolerance field, [In] 2019 International Conference on Advanced Technologies for Communications (ATC), IEEE, 2019, pp. 269–272, DOI: 10.1109/ATC.2019.8924560.
  • [17] CUCKA M., SALIK P., ROKA R., MUNSTER P., FILKA M., Simulation models of pulse generator for OTDR in Matlab and VPIphotonics, [In] 2018 41st International Conference on Telecommunications and Signal Processing (TSP), IEEE, 2018, pp. 1–4, DOI: 10.1109/TSP.2018.8441274.
  • [18] VAVRA J., KYSELAK M., Analog signal processing for fiber optic sensor detecting temperature changes, [In] 2020 27th International Conference on Telecommunications (ICT ), 2020, pp. 1–4, DOI: 10.1109/ICT49546.2020.9239582.
  • [19] HANÁČEK F., LÁTAL J., KOUDELKA P., ŠIŠKA P., SKAPA J., VITÁSEK J., VASINEK V., HURTA J., Measurement of the spectral characteristics of telecommunication fiber emitted at high temperatures, Proc. SPIE 8073, Optical Sensors 2011; and Photonic Crystal Fibers V, 80731V (9 May 2011), DOI: 10.1117/12.887093.
  • [20] HANACEK F., LATAL J., SISKA P., VASINEK V., KOUDELKA P., SKAPA J., HURTA J., Fiber optic sensor for high temperatures, [In] 2010 International Conference on Applied Electronics, IEEE, 2010, pp. 1–4.
  • [21] RAN Z., LIU S., LIU Q., WANG Y., BAO H., RAO Y., Novel high-temperature fiber-optic pressure sensor based on etched PCF F-P interferometer micromachined by a 157-nm laser, IEEE Sensors Journal 15(7), 2015, pp. 3955–3958, DOI: 10.1109/JSEN.2014.2371243.
  • [22] WOZNIAK W.A., RATAJCZYK F., Transformation of polarization state of the light using wave plates with arbitrary phase difference: half wave plates, Optica Applicata 33(2–3), 2003, pp. 337–343.
  • [23] SHI Y., FENG H., ZENG Z., Distributed fiber sensing system with wide frequency response and accurate location, Optics and Lasers in Engineering 77, 2016, pp. 219–224, DOI: 10.1016/j.optlaseng.2015.08.010.
  • [24] HUANG S.-C., LIN W.-W., TSAI M.-T., CHEN M.-H., Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks, Sensors and Actuators A: Physical 135(2), 2006, pp. 570–579, DOI: 10.1016/j.sna.2006.10.010.
  • [25] PUSTELNY T., TYSZKIEWICZ C., BARCZAK K., Optical fiber sensors of magnetic field applying Faraday’s effect, Optica Applicata 33(2–3), 2003, pp. 469–475.
  • [26] LÁTAL J., VITÁSEK J., KOUDELKA P., ŠIŠKA P., LÍNER A., PÁPEŠ M., WITAS K., HEJDUK S., VAŠINEK V., Rock massif temperature changes measurement with regard to thermal responses generated by a thermal response test device, Proc. SPIE 8774, Optical Sensors 2013, 877416 (3 May 2013), DOI: 10.1117/12.2017241.
  • [27] CIELO P., DUFOUR M., SOKALSKI A., Optical inspection in hostile industrial environments: Single-sensor vs. imaging methods, Proc. SPIE 0959, Optomechanical and Electro-Optical Design of Industrial Systems, (14 November 1988), DOI: 10.1117/12.947779.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c26e67b5-4f4c-45f8-a984-5b19b5cf1c55
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.