PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lignin-based polyurethane and epoxy adhesives: a short review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: of this paper was to review and summarize significant papers related to the development and characterization of lignin-containing adhesives: polyurethane and epoxy types. In the last decades, several efforts have been dedicated on the development of renewable raw materials for polymer synthesis, mainly due to petroleum depletion and sustainability. In this context, lignin emerged as a potential candidate to substitute fossil-based raw materials in adhesive synthesis and formulations. Design/methodology/approach: Recent and other relevant papers were reviewed, aiming to identify the main advantages and limitations involved in lignin incorporation into epoxy and polyurethane adhesives formulations. First, effects of unmodified lignin addition were presented. Afterwards, the main lignin chemical modification methods were presented and discussed, based on thermomechanical results. Findings: Incorporation of unmodified lignin usually is limited to 30 %wt., otherwise mechanical properties are drastically affected as consequence of poor lignin solubility and excessive brittleness. Lignin chemical modification can be used to increase the reactivity of hydroxyl groups and/or add new moieties in its molecular structure, improving solubility and thermomechanical properties of cured adhesives. Practical implications: In the last years, some industrial plants started to operate and produce technical grade lignin at industrial scale, with reproducible properties and controlled molecular structure. Therefore, increasing efforts have been dedicated from researchers and chemists to develop lignin-based technologies, in which this work can directly contribute with. Originality/value: As consequence of the high content of phenol groups in its molecular structure, lignin was mostly applied on the development of phenolic resins applied as wood adhesives. For the first time in the literature, this work summarizes the advances related to synthesis and characterization of polyurethane and epoxy, applied as adhesives. Results can support the development and application of biobased, as well as contribute to the revalorization of this valuable and readily available biomass.
Rocznik
Strony
56--63
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
  • Modelling and Applied Social Sciences Centre, ABC Federal University, Santo Andre, Brazil
autor
  • Modelling and Applied Social Sciences Centre, ABC Federal University, Santo Andre, Brazil
autor
  • Modelling and Applied Social Sciences Centre, ABC Federal University, Santo Andre, Brazil
autor
  • Department of Mechatronics and Mechanical Engineering, Polytechnic School of Engineering, University of São Paulo, São Paulo, Brazil
Bibliografia
  • [1] J. Nowacki, A. Sajek, Optimizing glue joint of alumin-ium metallic foams, Journal of Achievements in Ma-terials and Manufacturing Engineering 75/1 (2016) 14- 23. DOI: https://doi.org/10.5604/17348412.1227681 [2] D. dos Santos, G.F. Batalha, Mechanical behaviour characterizing and simulation of polyacrylate rubber, Journal of Achievements in Materials and Manufacturing Engineering 38/1 (2010) 33-40.
  • [3] D.J. dos Santos, L.B. Tavares, G.F. Batalha, Experimental study of influence factors on compression stress relaxation of ACM, Journal of Achievements in Materials and Manufacturing Engineering 46/1 (2011) 33-39. [4] M. Mrówka, M. Szymiczek, J. Lenza, Thermoplastic polyurethanes for mining application processing by 3D printing, Journal of Achievements in Materials and Manufacturing Engineering 95/1 (2019) 13-19. DOI: https://doi.org/10.5604/01.3001.0013.7620
  • [5] R.R. de Sousa Jr., E.A. Miranda, G.F. Batalha, D.J. dos Santos, Bio-based polyurethane applied as matrix of fiberglass reinforced composite, Journal of Achievements in Materials and Manufacturing Engineering 81/1 (2017) 5-10. DOI: https://doi.org/10.5604/01.3001.0010.2031
  • [6] D.J. dos Santos, L.B. Tavares, G.F. Batalha, Mechanical and physical properties investigation of polyurethane material obtained from renewable natural source, Journal of Achievements in Materials and Manufacturing Engineering 54/2 (2012) 211-217.
  • [7] N.M. Ito, A.M. Nacas, R.A. Antunes, M.C. Salvadori, D.J. dos Santos, Study of the correlation between flexible food packaging peeling resistance and surface composition for aluminium-metallized BOPP films aged at 60°C, Journal of Adhesion 93/1-2 (2017) 4-17. DOI: https://doi.org/10.1080/00218464.2016.1176921
  • [8] M. Polok-Rubiniec, A. Włodarczyk-Fligier, Poly propylene matrix composite with charcoal filler, Journal of Achievements in Materials and Manufacturing Engineering 103/2 (2020) 60-66. DOI: https://doi.org/10.5604/01.3001.0014.7195
  • [9] J.R. Gouveia, C.L. da Costa, L.B. Tavares, D.J dos Santos, Synthesis of Lignin-Based Polyurethanes: A Mini-Review, Mini-Reviews in Organic Chemistry 16/4 (2019) 345-352. DOI: https://doi.org/10.2174/1570193X15666180514125817
  • [10] P. Cinelli, I. Anguillesi, A. Lazzeri, Green synthesis of flexible foams from liquefied lignin, European Polymer Journal 49/6 (2013) 1174-1184. DOI: https://doi.org/10.1016/j.eurpolymj.2013.04.005
  • [11] S. Sarkar, B. Adhikari, Lignin-modified phenolic resin: synthesis optimization, adhesive strength, and thermal stability, Journal of Adhesion Science and Technology 14/9 (2000) 1179-1193. DOI: https://doi.org/10.1163/156856100743167
  • [12] A.M. Nacas, N.M. Ito, R.R. de Sousa Jr, M.A. Spinacé, D.J. dos Santos, Effects of NCO:OH ration on the mechanical properties and chemical structure of Kraft lignin-based polyurethane adhesive, Journal of Adhesion 93/1-2 (2017) 18-29. DOI: https://doi.org/10.1080/00218464.2016.1177793
  • [13] J.L. García, G. Pans, C. Phanopoulos, Use of lignin in polyurethane-based structural wood adhesives, Journal of Adhesion 94/10 (2018) 814-828. DOI: https://doi.org/10.1080/00218464.2017.1385458
  • [14] L.B. Tavares, C.V. Boas, G.R. Schleder, A.M. Nacas, D.S. Rosa, D.J. Santos, Bio-based polyurethane prepared from Kraft lignin and modified castor oil, Express Polymer Letters 10/11 (2016) 927-940. DOI: https://doi.org/10.3144/expresspolymlett.2016.86
  • [15] Y.Y. Wang, C.E. Wyman, C.M. Cai, A.J. Ragauskas, Lignin-Based Polyurethanes from Unmodified Kraft Lignin Fractionated by Sequential Precipitation, ACS Applied Polymer Materials 1/7 (2019) 1672-1679. DOI: https://doi.org/10.1021/acsapm.9b00228
  • [16] G. Griffini, V. Passoni, R. Suriano, M. Levi, S. Turri, Polyurethane coatings based on chemically modified fractionated lignin, ACS Sustainable Chemistry and Engineering 3/6 (2015) 1145-1154. DOI: https://doi.org/10.1021/acssuschemeng.5b00073
  • [17] L.C.F. WU, W.G. Glasser, Engineering plastics from lignin. I. Synthesis of hydroxypropyl lignin, Journal of Applied Polymer Science 29/4 (1984) 1111-1123. DOI: https://doi.org/10.1002/app.1984.070290408
  • [18] J. Bernardini, P. Cinelli, I. Anguillesi, M. Coltelli, A. Lazzeri, Flexible polyurethane foams green production employing lignin or oxypropylated lignin, European Polymer Journal 64 (2015) 147-156. DOI: https://doi.org/10.1016/j.eurpolymj.2014.11.039
  • [19] C.A. Cateto, M.F. Barreiro, A.E. Rodrigues, M.N. Belgacem, Optimization study of lignin oxy propylation in view of the preparation of polyurethane rigid foams, Industrial & Engineering Chemistry Research 48/5 (2009) 2583-2589. DOI: https://doi.org/10.1021/ie801251r
  • [20] J.R. Gouveia, L.D. Antonino, G.E.S. Garcia, L.B Tavares, A.N.B. Santos, D.J. dos Santos, Kraft lignin-containing adhesives: the role of hydroxypropylation on thermomechanical properties, Journal of Adhesion (2020) (published online). DOI: https://doi.org/10.1080/00218464.2020.1784148
  • [21] Y. Chen, S. Fu, H. Zhang, Sugnally improvement of polyurethane adhesive with hydroxy-enriched lignin from bagasse, Colloids and Surfaces A 585 (2020) 124164. DOI: https://doi.org/10.1016/j.colsurfa.2019.124164
  • [22] X. Chen, X. Xi, A. Pizzi, E Fredon, G. Du, C. Gerardin, S. Amirou, Oxidized demethylated lignin as a bio-based adhesive for wood bonding, Journal of Adhesion (2020) (published online). DOI: https://doi.org/10.1080/00218464.2019.1710830
  • [23] S. Sadeghifar, C. Cui, D.S. Argyropoulos, Toward Thermoplastic Lignin Polymers. Part I. Selective Masking of Phenolic Hydroxyl Groups in Kraft Lignins via Methylation and Oxypropylation Chemistries, Industrial & Engineering Chemistry Research 51 (2012) 16713-16720. DOI: https://doi.org/10.1021/ie301848j
  • [24] C. Cui, S. Sadeghifar, S. Sen, D.S. Argyropoulos, Toward Thermoplastic Lignin Polymers. Part II. Thermal and polymer characteristics of kraft lignin and derivatives, BioResources 8/1 (2013) 864-886.
  • [25] H. Jeong, J. Park, S. Kim, J. Lee, N. Ahn, H. Roh, Preparation and characterization of thermoplastic polyurethanes using partially acetylated lignin, Fibers and Polymers 14/7 (2013) 1082-1093. DOI: https://doi.org/10.1007/s12221-013-1082-7
  • [26] J.R. Gouveia, R.R. de Sousa Jr, A.O. Ribeiro, S.A. Saraiva, D.J. dos Santos, Effect of soft segment molecular weight and NCO:OH ratio on thermomechanical properties of lignin-based thermoplastic polyurethane adhesive, European Polymer Journal 131 (2020) 109690. DOI: https://doi.org/10.1016/j.eurpolymj.2020.109690
  • [27] J.R. Gouveia, G.E.S. Garcia, L.D. Antonino, L.B. Tavares, D.J. dos Santos, Epoxidation of kraft lignin as a tool for improving the mechanical properties of epoxy adhesive, Molecules 25 (2020) 2513. DOI: https://doi.org/10.3390/molecules25112513
  • [28] R.J. Li, J. Gutierrez, Y.L. Chung, C.W. Frank, S.L Billington, E.S. Satelly, A lignin-epoxy resin derived from biomass as an alternative formaldehyde-based wood adhesive, Green Chemistry 20 (2018) 1459-1466. DOI: https://doi.org/10.1039/C7GC03026F
  • [29] X. Kong, Z. Xu, L. Guan, M. Di, Study of polyblending epoxy resin adhesive with lignin I-curing temperature, International Journal of Adhesion and Adhesives 48 (2014) 75-79. DOI: https://doi.org/10.1016/j.ijadhadh.2013.09.003
  • [30] W.L.S. Nieh, W.G. Glasser, Lignin Epoxide: synthesis and characterization, in: W.G. Glasser, S. Sarkanen (eds.) Lignin. ACS Symposium Series, American Chemical Society, Washington, 1989, 506-514. DOI: https://doi.org/10.1021/bk-1989-0397.ch040
  • [31] M.W. Ott, C. Dietz, S. Trosien, S. Mehlhase, M.J. Bitsch, M. Nau, T. Meckel, A. Geissler, G. Siegert, J. Huong, B. Hertel, R.W. Stark, M. Biesalski, Co-curing of epoxy resins with aminated lignins: insights into the role of lignin homo crosslinking during lignin amination on the elastic properties, Holzforschung 75/4 (2021) 390-398. DOI: https://doi.org/10.1515/hf-2020- 0060
  • [32] S. Nikafshar, O. Zabihi, Y. Moradi, M. Ahmadi, S. Amiri, M, Naebe, Catalyzed Synthesis and Characterization of a Novel Lignin-Based Curing Agent for the Curing of High-Performance Epoxy Resin, Polymers 9/7 (2017) 266. DOI: https://doi.org/10.3390/polym9070266
  • [33] H. Pan, G. Sun, T. Zhao, Synthesis, and characterization of aminated lignin, International Journal of Biological Macromolecules 59 (2013) 221-226. DOI: https://doi.org/10.1016/j.ijbiomac.2013.04.049
  • [34] H. Pan, G. Sun, T. Zhao, G. Wang, Thermal properties of epoxy resins crosslinked by animated lignin, Polymer Engineering and Science 55/4 (2015) 924- 932. DOI: https://doi.org/10.1002/pen.23960
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c26e3989-9459-4b0f-bfd7-09cc37606967
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.