PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bending and Compression Properties of ABS and PET Structural Materials Printed Using FDM Technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The bend and compression mechanical properties of 3D-printed polyethylene terephthalate (PET) and acrylonitrile butadiene styrene (ABS) rectangular and cylindrical specimens (fully-dense and with circular, hexagonal, and rectangular perforations) are presented. In three-point bending, fully-dense PET flexural strength was 69 MPa, yield stress was 48.9 MPa, and yield stress from compression was 31.4 MPa. For ABS, these values were 59, 41.7, and 51.2 MPa, respectively – not significantly different from those of polymers manufactured by common techniques. Whereas perforation reduced density, the strength values were significantly lower, decreased for the circular perforation to a value of 20% strength for the fully-dense specimen. Specific strengths dropped quite significantly for the specimens tested in bending, whereas they did not differ significantly when tested by compression.
Słowa kluczowe
Rocznik
Strony
39--42
Opis fizyczny
Bibliogr. 10 poz., fot., rys, tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] Tenerowicz M., Rzadkosz S., Żak P., Kranc M. (2013). Komputerowe wspomaganie odlewnictwa artystycznego. Archives of Foundry Engineering, 13 (spec. iss. 3), 171–174.
  • [2] Jarco A., Rzadkosz S., Krokosz J., Pabiś R., Gil A., Czekaj E., Modlnicki S., Ćwiklak R. (2012). Studium technologiczno-konstrukcyjne wykorzystania techniki szybkiego prototypowania do wykonania odlewu artystycznego medalu 65-lecia Instytutu Odlewnictwa w Krakowie. Prace Instytutu Odlewnictwa, 1(52), 55–70, doi:10/7356/iod.2012.04
  • [3] Budzik G., Budzik W., Cygnar M., Janisz, K. (2009). Możliwość zastosowania szybkiego prototypowania w procesie projektowania i wytwarzania elementów pojazdów samochodowych. Problemy eksploatacji, 1(72), 7–16.
  • [4] Werkheiser N. (2015). 3D printing in space technology demonstration. 2015 National Space & Missile Materials Symposium NSMMS. 22–25 June. Chantilly, USA.
  • [5] Cykowska-Błasiak M., Ozga P. (2015). Wydruk 3D jako narzędzie do planowania zabiegów ortopedycznych. Budownictwo i Architektura, 1(14), 15–23.
  • [6] Kaye R., Goldstein T., Zeltsman D., Grande D.A., Smith L.P. (2016). Three dimensional printing: A review on the utility within medicine and otolaryngology. International Journal of Pediatric Otorhinolaryngology, 89, 145–148.
  • [7] Wohlers T., Caffrey, T., Campbell I. (2016). Wohlers Report 2016. 3D printing and additive manufacturing state of the industry: annual worldwide progress report. Wohlers Associates, Fort Collins, USA.
  • [8] Wang J., Xie H., Weng Z., Senthil T., Wu L. (2016). A novel approach to improve mechanical properties of parts fabricated by fused deposition modeling. Materials and Design, 105, 152–159.
  • [9] Weng Z., Wang J., Senthil T., Wu L. (2016). Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Materials and Design, 102, 276–283.
  • [10] Lieneke T., Denzer V., Adam G. A. O., Zimmer D. (2016). Dimensional tolerances for additive manufacturing: Experimental investigation for Fused Deposition Modeling. Procedia CIRP, 43, 286–291.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c26befe7-6b2f-45b0-a31a-8fcce3917492
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.