Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The influence of wrong information about transition and measurement models on estimation quality has been presented in the paper. Two methods of a particle filter, with and without the Population Monte Carlo modification, and also the extended and unscented Kalman filters methods have been compared. A small 5-bus power system has been used in simulations, which have been performed based on one data set, and this data set has been chosen from among 100 different – to draw the most general conclusions. Based on the obtained results it has been found that for the particle filter methods the implementation of the slightly higher standard deviation than the true value, usually increases the estimation quality. For the Kalman filters methods it has been concluded that optimal values of variances are equal to the true values.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
559--574
Opis fizyczny
Bibliogr. 21 poz., fig., tab., wz.
Twórcy
autor
- Faculty of Electrical Engineering, Institute of Control and Information Engineering,Poznan University of Technology Piotrowo 3a, 60-965 Poznań, Poland
- Faculty of Computing, Chair of Control and Systems Engineering Division of Signal Processing and Electronic Systems, Poznan University of Technology Piotrowo 3a, 60-965 Poznań, Poland
autor
- Faculty of Electrical Engineering, Institute of Electrical Engineering and Electronics, Poznan University of Technology Piotrowo 3a, 60-965 Poznań, Poland
- 4Spirvent sp. z o.o. Polna 2C, 64-600 Oborniki, Poland
autor
- Faculty of Electrical Engineering, Institute of Control and Information Engineering, Poznan University of Technology Piotrowo 3a, 60-965 Poznań, Poland
Bibliografia
- [1] Huang Z., Schneider K., Nieplocha J., Feasibility Studies of Applying Kalman Filter Techniques to Power System Dynamic State Estimation, Proc. In Power Engineering Conference, IPEC 2007 376-382 (2007).
- [2] Shih K. R., Huang S. J., Application of a Robust Algorithm for Dynamic State Estimation of a Power System, Power Systems, IEEE Transactions on, DOI: 10.1109/59.982205, 17(1): 141-147 (2002).
- [3] Valverde G., Terzija V., Unscented Kalman Filter for Power System Dynamic State Estimation, IET Generation, Transmission & Distribution 5(1): 29-37 (2011).
- [4] Janiszewski D., Particle Filter Approach for Permanent Magnet Synchronous Motor State Estimation, Przeglad Elektrotechniczny 90(6): 56-60 (2014).
- [5] Candy J. V., Bayesian Signal Processing, WILEY, New Jersey, DOI: 10.1002/9780470430583, pp. 36-44 (2009).
- [6] Schön T. B., Wills A., Ninness B., System Identification of Nonlinear State-space Models, Automatica 47(1): 39-49 (2011).
- [7] Gordon N. J., Salmond D. J., Smith A. F. M., Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEE Proceedings-F 140(2): 107-113 (1993).
- [8] Šmídl V., Hofman R., Adaptive Importance Sampling in Particle Filtering, Proc. 16th Int. Conf. on Information Fusion (FUSION), pp. 9-16 (July 2013).
- [9] Thrun S., Burgard W., Fox D., Probabilistic robotics, MIT Press, Cambridge, 67-90 (2005).
- [10] Kozierski P., Lis M., Ziętkiewicz J., Resampling in Particle Filtering – Comparison, Studia z Automatyki i Informatyki 38: 35-64 (2013).
- [11] Kozierski P., Lis M., Owczarkowski A., Ziętkiewicz J., Particle Filter in Power System State Estimation – Large Measurements Errors, Proc. 16th Nat. Conf. on Advances in Applied Electrical Engineering (PES-9), pp. 157-160 (June 2014).
- [12] Arulampalam S., Maskell S., Gordon N., Clapp T., A Tutorial on Particle Filters for On-line Nonlinear/Non-Gaussian Bayesian Tracking, IEEE Proceedings on Signal Processing 50(2): 174-188 (2002).
- [13] Simon D., Optimal State Estimation, WILEY-INTERSCIENCE, New Jersey (2006).
- [14] Kozierski P., Lis M., Particle Filter in Tracking Problem – Introduction, Studia z Automatyki i Informatyki 37: 79-94 (2012). (in Polish)
- [15] Doucet A., Freitas N., Gordon N., Sequential Monte Carlo Methods in Practice, Springer-Verlag, New York, DOI: 10.1007/978-1-4757-3437-9, pp. 225-246 (2001).
- [16] Cappe O., Guillin A., Marin J. M., Robert C. P., Population Monte Carlo, Journal of Computational and Graphical Statistics, DOI: 10.1198/106186004X12803, 13(4): 907-929 (2004).
- [17] Kremens Z., Sobierajski M., The Analysis of Power Systems, Wydawnictwa Naukowo-Techniczne, Warsaw, pp. 39-191 (1996). (in Polish)
- [18] Abur A., Exposito A. G., Power System State Estimation: Theory and Implementation, Marcel Dekker, Inc., pp. 17-49 (2004).
- [19] Andersson G., Modelling and Analysis of Electric Power Systems, EEH-Power Systems Laboratory, Swiss Federal Institute of Technology (ETH), Zürich (2008).
- [20] Milano F., Power System Modelling and Scripting, DOI: 10.1007/978-3-642-13669-6, Springer, London, Dordrecht, Heidelberg, New York (2010).
- [21] Kozierski P., Population Monte Carlo and Adaptive Importance Sampling in Particle Filter, Studia z Automatyki i Informatyki 39: 33-41 (2014).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c26ad38a-a296-4c79-ac38-aa055979f80c