Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We study the growth of the transcendental meromorphic solution f(z) of the linear difference equation: [formula] where q(z), p0(z), . . ., pn(z) (n ≥ 1) are polynomials such that p0(z)pn(z) ≠ 0, and obtain some necessary conditions guaranteeing that the order of ƒ(z) satisfies σ(ƒ) ≥ 1 using a difference analogue of the Wiman-Valiron theory. Moreover, we give the form of ƒ(z) with two Borel exceptional values when two of p0(z), . . ., pn(z) have the maximal degrees.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
159--168
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- LMIB & School of Mathematica and Systems Science, Beihang University, Beijing, 100191, P.R. China
autor
- LMIB & School of Mathematica and Systems Science, Beihang University, Beijing, 100191, P.R. China
autor
- LMIB & School of Mathematica and Systems Science, Beihang University, Beijing, 100191, P.R. China
Bibliografia
- [1] Bank S.B., Kaufman R.P., An extension of Hölder’s theorem concerning the gamma function, Funkcial. Ekvac., 19(1976), 53-63.
- [2] Chen Z.X., Growth and zeros of meromorphic solution of some linear difference equations, J. Math. Anal. Appl., 373(2011), 235-241.
- [3] Chiang Y.K., Feng S.J., On the Nevanlinna characteristic of ƒ(z + η) and difference equations in the complex plane, Ramanujan J., 16(2008), 105-129.
- [4] Chiang Y.K., Feng S.J., On the growth of logarithmic differences, difference quotients and logarithmic derivatives of meromorphic functions, Trans. Amer. Math. Soc., 361(2009), 3767-3791.
- [5] Chiang Y.K., Feng S.J., On the growth of logarithmic difference of meromorphic functions and a Wiman-Valiron estimate, Constr. Approx., 44(2016), 313-326.
- [6] Halburd R.G., Korhonen R.J., Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl., 314(2006), 477-487.
- [7] Ishizaki K., Yanagihara N., Wiman-Valiron method for difference equations, Nagoya Math. J., 175(2004), 75-102.
- [8] Ishizaki K., On difference Riccati equations and second order linear difference equations, Aequat. Math., 81(2011), 185-198.
- [9] Laine I., Nevanlinna theory and complex differential equations, De Gruyter Studies in Mathematics, vol. 15, Walter de Gruyter & Co., Berlin, 1993.
- [10] Laine I., Yang C.C., Clunie theorems for difference and q-difference polynomials, J. Lond. Math. Soc., 76(2)(2007), 556-566.
- [11] Li S., Gao Z.S., Finite order meromorphic solutions of linear difference equations, Proc. Japan Acad. Ser. A Math. Sci., 87(2011), 73-76.
- [12] Shimomura S., Entire solutions of a polynomial difference equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28(1981), 253-266.
- [13] Whittaker J.M., Interpolatory Function Theory, Cambridge Tracts in Mathematics and Mathematical Physics, No. 33, Stechert-Hafner, Inc., New York, 1964.
- [14] Yanagihara N., Meromorphic solutions of some difference equations, Funkcial. Ekvac., 23(1980), 309-326.
- [15] Yang C.C., Yi H.X., Uniqueness Theory of Meromorphic Functions, Mathematics and its Applications, vol. 557, Kluwer Academic Publishers Group, Dordrecht, 2003.
- [16] Zheng X.M., Tu J., Growth of meromorphic solutions of linear difference equations, J. Math. Anal. Appl., 384(2011), 349-356.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c269431d-35c7-4856-be02-9b57a752e3f2