PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Ceramic Coating on Mechanical Properties of Stainless Steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Crystal structure and phase composition of stainless steel substrates (AISI 304 type) was studied and it was found that they adopted the cubic symmetry. The calculated elementary cell parameter for the mayor Fe-Ni phase (weight fraction 99%) was a = 3.593 Å, whereas the mean grain size was = 2932 Å. Morphology of the stainless steel substrate surface was studied with profilometry. Mechanical properties of the stainless steel substrates and stainless steel substrates coated with ceramic layer of barium strontium titanate were studied with microhardness tester. For measurements performed according to the Vickers method the average microhardness was found HV = 189 or HV = 186 for the “in-line” and “mapping” measurement pattern, respectively. The sol-gel method was used to coat the surface of the stainless steel substrate with a thin ceramic layer of the chemical composition Ba0.6 Sr0.4 TiO3 . It was found that the stainless steel substrate covered with sol-gel deposited ceramic coating exhibited the average hardness within the range HV = 217 up to HV = 235 for loading force F = 98 mN and F = 0.98 N, respectively. The Knopp method was also used and it was found that the stainless steel substrate with Ba0.6 Sr0.4 TiO3 coating exhibited hardness HK = 386.
Twórcy
autor
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials Engineering and Welding, 11/12, Narutowicza Str., 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials Engineering and Welding, 11/12, Narutowicza Str., 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials Engineering and Welding, 11/12, Narutowicza Str., 80-233 Gdańsk, Poland
Bibliografia
  • [1] K. H. Lo, C. H. Shek, J. K. L. Lai, Recent developments in stainless steels, Mater. Sci. Eng. R65, 39-104 (2009); DOI:10.1016/j.mser.2009.03.001.
  • [2] J. Beddoes, J. G. Parr, Introduction to Stainless Steels, 3rd edition, ASM International, Materials Park, OH, USA, (1999).
  • [3] J. Bautista-Ruiz, A. Chaparro, J. J. Olaya, Characterization of the tribological properties of bismuth-titanate coatings synthesized by sol-gel on 316L stainless steel substrates, Tribol. Indust. 41 (3), 452-462 (2019), DOI: 10.24874/ti.2019.41.03.15.
  • [4] B. Tlili, A. Barkaoui, M. Walock, Tribology and wear resistance of the stainless steel. The sol-gel coating impact on the friction and damage, Trib. Intern. 102, 348-354, (2016), DOI: 10.1016/j.triboint.2016.06.004.
  • [5] H. Cheraghi, M. Shahmiri, Z. Sadeghian, Corrosion behavior of TiO2-NiO nanocomposite thin films on AISI 316L stainless steel prepared by sol-gel method, Thin Sol. Fil. 552, 289-296 (2012), DOI: 10.1016/j.tsf.2012.07.125.
  • [6] ISO 6507-1:2018 Metallic materials - Vickers hardness test - Part 1: Test method.
  • [7] ISO 4545-1:2017 Metallic materials - Knoop hardness test - Part 1: Test method.
  • [8] MATCH! Version 2.0.11, CRYSTAL IMPACT, Postfach 1251, 53002 Bonn, Germany (URL: http://www.crystalimpact.com/match).
  • [9] ISCD Database, FIZ Karlsruhe, (URL: http://www.fiz-karlsruhe.de)
  • [10] International Centre for Diffraction Data, 12 Campus Boulevard, Newton Square, PA 19073-3273 U.S.A.; (URL: http://www.icdd.com).
  • [11] IUCr/COD/AMCSD Database (URL: http://www.crystalimpact.com.match).
  • [12] H. M. Rietveld, The Rietveld method-a historical perspective, Austr. J. Phys. 41, 113-116 (1988).
  • [13] Catalogue: https://www.ft-hardness.com/en/product/pdf/hard-nesstester_ars01.pdf (source: URL: https://www.ft-hardness.com/en/index.html).
  • [14] L. C. Klein, Sol gel formation and deposition, In: A. N. Goldstein (Ed.), Handbook of nanophase materials, Marcel Dekker Inc., New York (1997).
  • [15] K. Kumar, K. Keizer, A. Burggraaf, T. Okubo, H. Nagamoto, S. Morooka, Densification of nanostructured titania assisted by a phase transformation. Nature 358,48-51 (1992). https://doi.org/10.1038/358048a0.
  • [16] H. Dong, G. Lu, D. Chen, D. Jin, J. Chen, J. Cheng, Effects of LaNiO3 buffer layer on improving the dielectric properties of barium strontium titanate thin films on stainless steel substrates, J. Sol-Gel Sci. Technol. 80, 848-852 (2016); DOI 10.1007/s10971-016-4169-y.
  • [17] D. Czekaj, A. Lisińska-Czekaj, T. Orkisz, J. Orkisz, G. Smalarz, Impedance spectroscopic studies of sol-gel derived barium strontium titanate thin films, J. Europ. Ceram. Soc. 30, 465-470 (2010).
  • [18] D. Czekaj, A. Lisińska-Czekaj, J. Plewa, Study of nanomechanical properties of (1-y)BST-yMgO thin films, Ciên. Tecn. Mater. 29, e71-e75 (2017).
  • [19] D. Czekaj, A. Lisińska-Czekaj, Piezoresponse force microscopy and dielectric spectroscopy study of Ba0.6Sr0.4TiO3 thin films, J. Adv. Diel. 9 (3), 1950025 (2019), DOI: 10.1142/S2010135X19500255.
  • [20] D. Czekaj, A. Lisińska-Czekaj, Influence of Mg-doping on synthesis of sol-gel derived BST thin films, J. Adv. Diel. 2 (1), 1250010 (2012), DOI: 10.1142/S2010135X12500105.
Uwagi
EN
1. The Authors are grateful for financial support according to financial grant no. 033827 provided by Gdansk University of Technology.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c268b09f-93b0-4e11-bc34-de170d6bb4c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.