Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The acquisition of ECG signals offers physicians and specialists a very important tool in the diagnosis of cardiovascular diseases. However, very often these signals are affected by noise from various sources, including noise generated by movement during physical activity. This type of noise is known as Motion Artifact (MA) which changes the waveform of the signal, leading to erroneous readings. The elimination of this noise is performed by different filtering techniques, where the adaptive filtering using the LMS (least mean squares) algorithm stands out. The objective of this article is to determine which algorithms best deal with motion artifacts, taking into account the use of instruments or wearable equipment, in different conditions of physical activity. A comparison between different algorithms derived from LMS (NLMS, PNLMS and IPNLM) used in adaptive filtering is carried out using indicators such as: Pearson's Correlation Coefficient, Signal to Noise Ratio (SNR) and Mean Squared Error (MSE) as metrics to evaluate them. For this purpose, the mHealth database was used, which contains ECG signals taken during moderate to medium intensity physical activities. The results show that filtering by IPNLMS as well as PNLMS offers an improvement both visually and in terms of SNR, Pearson, and MSE indicators.
Czasopismo
Rocznik
Tom
Strony
157--172
Opis fizyczny
Bibliogr. 49 poz., fig., tab.
Twórcy
autor
- Universidad Nacional de San Agustín de Arequipa, School of Production and Services, Department of Electronic Engineering, Peru
autor
- Universidad Nacional de San Agustín de Arequipa, School of Production and Services, Department of Electronic Engineering, Peru
autor
- Universidad Nacional de San Agustín de Arequipa, School of Production and Services, Department of Electronic Engineering, Peru
autor
- Universidad Nacional de San Agustín de Arequipa, School of Production and Services, Department of Electronic Engineering, Peru
autor
- Universidad Nacional de San Agustín de Arequipa, School of Production and Services, Department of Electronic Engineering, Peru
autor
- Universidad Nacional de San Agustín de Arequipa, School of Production and Services, Department of Electronic Engineering, Peru
Bibliografia
- [1] An, X., Liu, Y., Zhao, Y., Lu, S., Stylios, G. K., & Liu, Q. (2022). Adaptive motion artifact reduction in wearable ECG measurements using impedance pneumography signal. Sensors, 22(15). https://doi.org/10.3390/s22155493
- [2] An, X., & Stylios, G. K. (2020). Comparison of motion artefact reduction methods and the implementation of adaptive motion artefact reduction in wearable electrocardiogram monitoring. Sensors, 20(5). https://doi.org/10.3390/s20051468
- [3] Banos, O., Garcia, R., Holgado-Terriza, J. A., Damas, M., Pomares, H., Rojas, I., Saez, A., & Villalonga, C. (2014). mHealthDroid: A novel framework for agile development of mobile health applications. In L. Pecchia, L. L. Chen, C. Nugent, & J. Bravo (Eds.), Ambient Assisted Living and Daily Activities (pp. 91–98). Springer International Publishing. https://doi.org/10.1007/978-3-319-13105-4_14
- [4] Banos, O., Villalonga, C., Garcia, R., Saez, A., Damas, M., Holgado-Terriza, J. A., Lee, S., Pomares, H., & Rojas, I. (2015). Design, implementation and validation of a novel open framework for agile development of mobile health applications. BioMedical Engineering OnLine, 14(2), S6. https://doi.org/10.1186/1475-925X-14-S2-S6
- [5] Benesty, J., & Gay, S. L. (2002). An improved PNLMS algorithm. 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing (pp. 1881–1884). IEEE. https://doi.org/10.1109/icassp.2002.5744994
- [6] Boyer, M., Bouyer, L., Roy, J. S., & Campeau-Lecours, A. (2023). Reducing noise, artifacts and interference in single-channel EMG signals: A review. Sensors, 23(6), 2927. https://doi.org/10.3390/s23062927
- [7] Burns, A., Greene, B. R., McGrath, M. J., O’Shea, T. J., Kuris, B., Ayer, S. M., Stroiescu, F., & Cionca, V. (2010). SHIMMERTM - A wireless sensor platform for noninvasive biomedical research. IEEE Sensors Journal, 10(9), 1527–1534. https://doi.org/10.1109/JSEN.2010.2045498
- [8] Cömert, A., & Hyttinen, J. (2015). A motion artifact generation and assessment system for the rapid testing of surface biopotential electrodes. Physiological Measurement, 36, 1. https://doi.org/10.1088/0967-3334/36/1/1
- [9] Duttweiler, D. L. (2000). Proportionate normalized least-mean-squares adaptation in echo cancelers. IEEE Transactions on Speech and Audio Processing, 8(5), 508–518. https://doi.org/10.1109/89.861368
- [10] Ebrahimzadeh, E., Pooyan, M., Jahani, S., Bijar, A., & Setaredan, S. K. (2015). ECG signals noise removal: Selection and optimization of the best adaptive filtering algorithm based on various algorithms comparison. Biomedical Engineering - Applications, Basis and Communications, 27(4), 1550038. https://doi.org/10.4015/S1016237215500386
- [11] Faiz, M. M. U., & Kale, I. (2022). Removal of multiple artifacts from ECG signal using cascaded multistage adaptive noise cancellers. Array, 14, 100133. https://doi.org/10.1016/j.array.2022.100133
- [12] Fang, Y., Zhu, X., Gao, Z., Hu, J., & Wu, J. (2019). New feedforward filtered-x least mean square algorithm with variable step size for active vibration control. Journal of Low Frequency Noise Vibration and Active Control, 38(1), 187–198. https://doi.org/10.1177/1461348418812326
- [13] Friesen, G. M., Jannett, T. C., Jadallah, M. A., Yates, S. L., Quint, S. R., & Nagle, H. T. (1990). A comparison of the noise sensitivity. IEEE. Transactions on Biomedical Engineering, 37(1), 85-98. https://doi.org/10.1109/10.43620
- [14] Ghaleb, F. A., Kamat, M. B., Salleh, M., Rohani, M. F., & Razak, S. A. (2018a). Two-stage motion artefact reduction algorithm for electrocardiogram using weighted adaptive noise cancelling and recursive Hampel filter. PLoS ONE, 13(11), e0207176. https://doi.org/10.1371/journal.pone.0207176
- [15] Ghaleb, F. A., Kamat, M., Salleh, M., Rohani, M. F., & Hadji, S. E. (2018b). Motion artifact reduction algorithm using sequential adaptive noise filters and estimation methods for mobile ECG. In F. Saeed, N. Gazem, S. Patnaik, A. S. Saed Balaid, & F. Mohammed (Eds.), Recent Trends in Information and Communication Technology (pp. 116–123). Springer International Publishing. https://doi.org/10.1007/978-3-319-59427-9_13
- [16] Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C. K., & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation, 101, e215–e220. https://doi.org/10.1161/01.cir.101.23.e215
- [17] Han, D., Bashar, S. K., Lázaro, J., Mohagheghian, F., Peitzsch, A., Nishita, N., Ding, E., Dickson, E. L., Dimezza, D., Scott, J., Whitcomb, C., Fitzgibbons, T. P., McManus, D. D., & Chon, K. H. (2022). A real-time PPG peak detection method for accurate determination of heart rate during sinus rhythm and cardiac arrhythmia. Biosensors, 12(2), 82. https://doi.org/10.3390/bios12020082
- [18] Huang, B., & Kinsner, W. (2002). ECG frame classification using dynamic time warping. Canadian Conference on Electrical and Computer Engineering (IEEE CCECE2002) (pp. 105–1110). IEEE. https://doi.org/10.1109/ccece.2002.1013101
- [19] Huang, M., Chen, D., & Xiong, F. (2019). An effective adaptive filter to reduce motion artifacts from ECG signals using accelerometer. 9th International Conference on Biomedical Engineering and Technology (ICBET '19) (pp. 83–88). Association for Computing Machinery. https://doi.org/10.1145/3326172.3326214
- [20] Jung, H. K., & Jeong, D. U. (2013). Development of wearable ECG measurement system using EMD for motion artifact removal. 7th International Conference on Computing and Convergence Technology (ICCCT) (pp. 299-304). IEEE.
- [21] Kim, H., Kim, S., Van Helleputte, N., Berset, T., Geng, D., Romero, I., Penders, J., Van Hoof, C., & Yazicioglu, R. F. (2012). Motion artifact removal using cascade adaptive filtering for ambulatory ECG monitoring system. 2012 IEEE Biomedical Circuits and Systems Conference (BioCAS) (pp. 160–163). IEEE. https://doi.org/10.1109/BioCAS.2012.6418472
- [22] Lee, J. W., & Yun, K. S. (2017). ECG monitoring garment using conductive carbon paste for reduced motion artifacts. Polymers, 9(9), 439. https://doi.org/10.3390/polym9090439
- [23] Levkov, C., Mihov, G., Ivanov, R., Daskalov, I., Christov, I., & Dotsinsky, I. (2005). Removal of power-line interference from the ECG: A review of the subtraction procedure. BioMedical Engineering Online, 4, 50. https://doi.org/10.1186/1475-925X-4-50
- [24] Lilienthal, J., & Dargie, W. (2021). Comparison of reference sensor types and position for motion artifact removal in ECG. European Signal Processing Conference (EUSIPCO) (pp. 1296–1300). IEEE. https://doi.org/10.23919/EUSIPCO54536.2021.9616221
- [25] Liu, Y., & Pecht, M. G. (2011). Reduction of motion artifacts in electrocardiogram monitoring using an optical sensor. Biomedical Instrumentation and Technology, 45(2), 155–163. https://doi.org/10.2345/0899-8205-45.2.155
- [26] Mandala, S., Fuadah, Y. N., Arzaki, M., & Pambudi, F. E. (2017). Performance analysis of wavelet-based denoising techniques for ECG signal. 5th International Conference on Information and Communication Technology (ICoIC7) (pp. 1-6). IEEE. https://doi.org/10.1109/ICoICT.2017.8074701
- [27] Kalra, A. M., Anand, G., Lowe, A., Simpkin, R., & Budgett, D. (2024). A smart idea to reject motion artefacts from ECG measurements due to sensor-body impedance. Sensors and Actuators: A. Physical, 367, 114989. https://doi.org/10.1016/j.sna.2023.114989
- [28] Medina, A., Lopez, N., Galdos, J., Supo, E., Rendulich, J., & Sulla, E. (2022). Continuous blood pressure estimation in wearable devices using photoplethysmography: A Review. International Journal of Emerging Technology and Advanced Engineering, 12(10), 104–113. https://doi.org/10.46338/ijetae1022_12
- [29] Meyer, C. R., & Keiser, H. N. (1977). Electrocardiogram baseline noise estimation and removal using cubic splines and state-space computation techniques. Computers and Biomedical Research, 10(5), 459–470. https://doi.org/10.1016/0010-4809(77)90021-0
- [30] Milanesi, M., Martini, N., Vanello, N., Positano, V., Santarelli, M. F., & Landini, L. (2008). Independent component analysis applied to the removal of motion artifacts from electrocardiographic signals. Medical and Biological Engineering and Computing, 46, 251–261. https://doi.org/10.1007/s11517-007-0293-8
- [31] Raya, M. A. D., & Sison, L. G. (2002). Adaptive noise cancelling of motion artifact in stress ECG signals using accelerometer. Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] [Engineering in Medicine and Biology] (pp. 1756–1757). IEEE. https://doi.org/10.1109/iembs.2002.1106637
- [32] Seok, D., Lee, S., Kim, M., Cho, J., & Kim, C. (2021). Motion artifact removal techniques for wearable EEG and PPG sensor systems. Frontiers in Electronics, 2, 685513. https://doi.org/10.3389/felec.2021.685513
- [33] Slock, D. T. M. (1993). On the convergence behavior of the LMS and the normalized LMS algorithms. IEEE Transactions on Signal Processing, 41(9), 2811–2825. https://doi.org/10.1109/78.236504
- [34] Sörnmo, L., & Laguna, P. (2005). Bioelectrical Signal Processing in Cardiac and Neurological Applications. Elsevier Inc.
- [35] Sultana, N., Kamatham, Y., & Kinnara, B. (2015). Performance analysis of adaptive filtering algorithms for denoising of ECG signals. 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 297–302). IEEE. https://doi.org/10.1109/ICACCI.2015.7275624
- [36] Welhenge1, A., Taparugssanagorn, A., & Raez, C. P. (2019). Performance comparison of variants of LMS algorithms for motion artifact removal in PPG signals during physical activities. Biomedical Journal of Scientific & Technical Research, 14(1). https://doi.org/10.26717/bjstr.2019.14.002485
- [37] Tejaswi, V., Surendar, A., & Srikanta, N. (2020). Simulink implementation of RLS algorithm for resilient artefacts removal in ECG signal. International Journal of Advanced Intelligence Paradigms, 16(3/4), 324–337. https://doi.org/10.1504/IJAIP.2020.107529
- [38] Thakor, N. V., & Zhu, Y. S. (1991). Applications of adaptive Filtering to ECG analysis: Noise cancellation and arrhythmia detection. IEEE Transactions on Biomedical Engineering, 38(8), 785–794. https://doi.org/10.1109/10.83591
- [39] Tuzcu, V., & Nas, S. (2005). Dynamic time warping as a novel tool in pattern recognition of ECG changes in heart rhythm disturbances. IEEE International Conference on Systems, Man and Cybernetics (pp. 182–186). IEEE. https://doi.org/10.1109/icsmc.2005.1571142
- [40] Van Alsté, J. A., & Schilder, T. S. (1985). Removal of base-line wander and power-line interference from the ECG by an efficient FIR filter with a reduced number of taps. IEEE Transactions on Biomedical Engineering, BME-32(12), 1052–1060. https://doi.org/10.1109/TBME.1985.325514
- [41] Widrow, B., Williams, C. S., Glover, J. R., McCool, J. M., Hearn, R. H., Zeidler, J. R., Kaunitz, J., Dong, E., & Goodlin, R. C. (1975). Adaptive noise cancelling: Principles and applications. IEEE, 63(12), 1692–1716. https://doi.org/10.1109/PROC.1975.10036
- [42] Wittenmark, B. (2014). Adaptive filter theory. Simon Haykin. Automatica, 29(2), 567-568. https://doi.org/10.1016/0005-1098(93)90162-M
- [43] Xiong, F., Chen, D., Chen, Z., & Dai, S. (2019). Cancellation of motion artifacts in ambulatory ECG signals using TD-LMS adaptive filtering techniques. Journal of Visual Communication and Image Representation, 58, 606–618. https://doi.org/10.1016/j.jvcir.2018.12.030
- [44] Xiong, F., Chen, D., & Huang, M. (2020). A wavelet adaptive cancellation algorithm based on multi‐inertial sensors for the reduction of motion artifacts in ambulatory ECGs. Sensors, 20(4), 970. https://doi.org/10.3390/s20040970
- [45] Xu, L., Rabotti, C., Zhang, Y., Ouzounov, S., Harpe, P. J. A., & Mischi, M. (2019). Motion-artifact reduction in capacitive heart-rate measurements by adaptive filtering. IEEE Transactions on Instrumentation and Measurement, 68(10), 4085–4093. https://doi.org/10.1109/TIM.2018.2884041
- [46] Xu, P., Tao, X., & Wang, S. (2011). Measurement of wearable electrode and skin mechanical interaction using displacement and pressure sensors. 4th International Conference on Biomedical Engineering and Informatics (BMEI) (pp. 1131–1134). IEEE. https://doi.org/10.1109/BMEI.2011.6098433
- [47] Yadav, S., Saha, S. K., Kar, R., & Mandal, D. (2021). Optimized adaptive noise canceller for denoising cardiovascular signal using SOS algorithm. Biomedical Signal Processing and Control, 69, 102830. https://doi.org/10.1016/j.bspc.2021.102830
- [48] Yoon, S. W., Min, S. D., Yun, Y. H., Lee, S., & Lee, M. (2008). Adaptive motion artifacts reduction using 3-axis accelerometer in E-textile ECG measurement system. Journal of Medical Systems, 32, 101–106. https://doi.org/10.1007/s10916-007-9112-x
- [49] Zhang, Z., Pi, Z., & Liu, B. (2015). TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. IEEE Transactions on Biomedical Engineering, 62(2), 522–531. https://doi.org/10.1109/TBME.2014.2359372
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c268521e-239c-49bd-bc80-4a74149533f7