PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Changes in Drought Conditions in Poland over the Past 60 Years Evaluated by the Standardized Precipitation-Evapotranspiration Index

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the variability of drought conditions in Poland in the years 1956-2015 with the use of the Standardized Precipitation-Evapotranspiration Index (SPEI). The study provides a new insight into the phenomenon of the past expansion of the drought-affected area as well as evidence of drying trends in a spatiotemporal context. 3-month, 6-month, and 12-month SPEI were considered, representing drought conditions relevant to agriculture and hydrology. The analysis demonstrates that the spatial extent of droughts shows a broad variability. The annual mean of the percentage of the area under drought has witnessed an increase for all three SPEI timescales. This also pertains to the mean area affected by drought over the growing season (April-September). A decreasing trend in the SPEI values indicates an increase in the severity of droughts over the 60-year period in question in an area extending from the south-west to the central part of Poland.
Słowa kluczowe
EN
drought   changes   Poland   SPEI  
PL
susza   zmiany   Polska  
Czasopismo
Rocznik
Strony
2530--2549
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
  • University of Warsaw, Faculty of Geography and Regional Studies, Warsaw, Poland
Bibliografia
  • Beguería, S., S.M. Vicente-Serrano, and M. Angulo-Martinez (2010), A multiscalar global drought dataset: the SPEIbase: a new gridded product for the analysis of drought variability and impacts, Bull. Am. Meteorol. Soc. 91, 1351- 1356, DOI: 10.1175/2010BAMS2988.1.
  • Beguería, S., S.M. Vicente-Serrano, F. Reig, and B. Latorre (2014), Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring, Int. J. Climatol. 34, 10, 3001-3023, DOI: 10.1002/joc.3887.
  • Damberg, L., and A. AghaKouchak (2014), Global trends and patterns of drought from space, Theor. Appl. Climatol. 117, 3, 441-448, DOI: 10.1007/s00704- 013-1019-5.
  • Fan, Y., and H. van den Dool (2008), A global monthly land surface air temperature analysis for 1948–present, J. Geophys. Res. 113, D1, D01103, DOI: 10.1029/2007JD008470.
  • Graczyk, D., and Z.W. Kundzewicz (2014), Changes in thermal extremes in Poland, Acta Geophys. 62, 6, 1435-1449, DOI: 10.2478/s11600-014-0240-7.
  • Helsel, D.R., and R.M. Hirsch (2002), Statistical Methods in Water Resources, Techniques of Water Resources Investigations, Book 4, Chapter A3, U.S. Geological Survey, 395 pp.
  • IMGW (2015), Bulletin of the National Hydrological and Meteorological Service, Institute of Meteorology and Water Management (IMGW), State Research Institute, Warsaw, Poland, No. 13, 65 pp.
  • IUNG-PIB (2015), Communication report regarding the incidences of drought conditions in Poland, period: 13 (1.VIII - 30.IX), Institute of Soil Science and Plant Cultivation – State Research Institute (IUNG-PIB), Puławy, Poland, available from: http://www.susza.iung.pulawy.pl/en/arch15 (accessed: 4 September 2016).
  • Kędziora, A., M. Kępińska-Kasprzak, P. Kowalczak, Z.W. Kundzewicz, A.T. Miler, E. Pierzgalski, and T. Tokarczyk (2014), Risks resulting from water shortages, Nauka 1, 149-172 (in Polish).
  • Kundzewicz, Z.W. (2008), Hydrological extremes in the changing world, Folia Geograph. Ser. Geograph. Phys. 39, 37-52.
  • Lorenc, H., M. Mierkiewicz, and M. Sasim (2008), Drought in Poland with special regards to the year 2006, Wiadomości IMGW 2, 1-2, 3-32 (in Polish).
  • Łabędzki, L. (2007), Estimation of local drought frequency in Central Poland using the standardized precipitation index SPI, Irrig. Drainage 56, 1, 67-77, DOI: 10.1002/ird.285.
  • Łabędzki, L., and B. Bąk (2004), Standardized climatic water balance a drought index, Acta Agrophys. 3, 1, 117-124 (in Polish).
  • Łabędzki, L., and B. Bąk (2014), Meteorological and agricultural drought indices used in drought monitoring in Poland: a review, Meteorol. Hydrol. Water Manag. 2, 2, 3-14.
  • Łabędzki, L., B. Bąk, and K. Smarzyńska (2014), Spatio-temporal variability and trends of Penman–Monteith reference evapotranspiration (FAO-56) in 1971-2010 under climatic conditions of Poland, Pol. J. Environ. Stud. 23, 6, 2083-2091.
  • Machiwal, D., and M.K. Jha (2012), Hydrologic Time Series Analysis: Theory and Practice, Springer, Dordrecht and Capital Publ. Co., New Delhi.
  • Osuch, M., R.J. Romanowicz, D. Lawrence, and W.K. Wong (2015), Assessment of the influence of bias correction on meteorological drought projections for Poland, Hydrol. Earth Syst. Sci. Discuss. 12, 10331-10377, DOI: 10.5194/ hessd-12-10331-2015.
  • Potop, V., C. Boroneant ̧, M. Mozny, P. Stepánek, and P. Skalák (2014), Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic, Theor. Appl. Climatol. 115, 3-4, 563-581, DOI: 10.1007/ s00704-013-0908-y.
  • Radziejewski, M., and Z.W. Kundzewicz (2004a), Detectability of changes in hydrological records, Hydrol. Sci. J. 49, 1, 39-51, DOI: 10.1623/hysj.49.1. 39.54002.
  • Radziejewski, M., and Z.W. Kundzewicz (2004b), Development, use and application of the HYDROSPECT data analysis system for the detection of changes in hydrological time-series for use in WCP – Water and National Hydrological Services, WCASP-65, Hydrospect, Version 2.0, User’s manual, WMO, Geneva, Switzerland.
  • Radzka, E. (2015), The assessment of atmoshperic drought during vegetation season (according to standardized precipitation index SPI) in central-eastern Poland, J. Ecolog. Eng. 16, 1, 87-91.
  • Spinoni, J., G. Naumann, and J. Vogt (2015), Spatial patterns of European droughts under a moderate emission scenario, Adv. Sci. Res. 12, 179-186, DOI: 10.5194/asr-12-179-2015.
  • Stagge, J.H., L.M. Tallaksen, C.-Y. Xu, and H.A.J. van Lanen (2014), Standardized precipitation-evapotranspiration index (SPEI): Sensitivity to potential evapotranspiration model and parameters. In: Proc. FRIEND-Water 2014, IAHS Red Book, 363, Montpellier, France.
  • Szwed, M., G. Karg, I. Pińskwar, M. Radziejewski, D. Graczyk, A. Kędziora, and Z.W. Kundzewicz (2010), Climate change and its effect on agriculture, water resources and human health sectors in Poland, Nat. Hazards Earth Syst. Sci. 10, 8, 1725-1737, DOI: 10.5194/nhess-10-1725-2010.
  • Theil, H. (1950), A rank-invariant method of linear and polynomial regression analysis, 1, 2, and 3, Proc. R. Neth. Acad. Sci. 53, 386-392, 521-525, 1397- 1412, DOI: 10.1007/978-94-011-2546-8_20.
  • Thornthwaite, C.W. (1948), An approach towards rational classification of climate, Geograph. Rev. 38, 1, 55-94, DOI: 10.2307/210739.
  • Tokarczyk, T. (2013), Classification of low flow and hydrological drought for a river basin, Acta Geophys. 61, 2, 404-421, DOI: 10.2478/s11600-012-0082-0.
  • Vicente-Serrano, S.M., S. Begueria, and J.I. Lopez-Moreno (2010), A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index, J. Climate 23, 7, 1696-1718, DOI: 10.1175/ 2009JCLI2909.1.
  • Wang, J., Y. Sheng, and T.S.D. Tong (2014), Monitoring decadal lake dynamics across the Yangtze Basin downstream of Three Gorges Dam, Remote Sens. Environ. 152, 251-269, DOI: 10.1016/j.rse.2014.06.004.
  • Wibig, J. (2012), Moisture conditions in Poland in view of the SPEI index, Woda- Środowisko-Obszary Wiejskie 12, 2, 38, 329-340 (in Polish).
  • WMO (2012), Standardized Precipitation Index. User Guide, WMO No. 01090, World Meteorological Organization, Geneva, Switzerland.
  • Zargar, A., R. Sadiq, B. Naser, and F.I. Khan (2011), A review of drought indices, Environ. Rev. 19, NA, 333-349, DOI: 10.1139/a11-013.
  • Zhang, K., J.S. Kimball, R.R. Nemani, S.W. Running, Y. Hong, J.J. Gourley, and Z. B. Yu (2015), Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration, Nat. Sci. Rep. 5, 15956, DOI: 10.1038/srep15956.
  • Ziese, M., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, and A. Schneider (2011), GPCC First Guess Product at 1.0°: Near real-time first guess monthly land-surface precipitation from rain-gauges based on SYNOP data, DOI: 10.5676/DWD_GPCC/FG_M_100.
  • Ziese, M., U. Schneider, A. Meyer-Christoffer, K. Schamm, J. Vido, P. Finger, P. Bissolli, S. Pietzsch, and A. Becker (2014), The GPCC Drought Index – a new, combined and gridded global drought index, Earth Syst. Sci. Data 6, 2, 285-295, DOI: 10.5194/essd-6-285-2014.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2640daa-f5c7-455d-b838-85aa624c2d34
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.