Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The objective of the study was to characterize the mycological quality of air at animal veterinary practice in Krakow. Bioaerosol measurements were performed during the summer season of 2017. The samples of outdoor and indoor air at animal veterinary practice were collected using a 6-stage Andersen's air sampler. The highest concentration of fungal aerosol was observed in the treatment room. The analysis showed various fungal contamination in different measuring points at different measuring times of the day. Based on the analysis of bioaerosol particle size distribution it was found that the largest "load" of fungi, isolated form the air, can reach (in the human respiratory tract) to the region of the throat, trachei and primary bronchi. The predominant fungi in indoor air was Penicillium spp. and Cladosporium cladosporoides. Fungi that can cause dermatophytoses have also been isolated from indoor air: Microsporum canis and Trichophyton verrucosum. The study confirmed that the animal veterinary practice can be a workplace related to exposure to microbial agents.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
168--179
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Department of Microbiology and Biomonitoring, University of Agriculture in Krakow, Poland
autor
- Department of Microbiology and Biomonitoring, University of Agriculture in Krakow, Poland
Bibliografia
- Ajoudanifar, H., Hedayati, M., Mayahi, S., Khosravi, A., Mousavi, B. (2011). Volumetric assessment of air borne indoor and outdoor fungi at poultry and cattle houses in the Mazandaran province, Iran. Archives of Industrial Hygiene and Toxicology 62, 243-248. DOI: 10.2478/10004-1254-62-2011-2099
- Bowers, R.M., McCubbin, I.B., Hallar, A.G., Fierer, N. (2012). Seasonal variability in airborne bacterial communities at a high-elevation site. Atmospheric Environment 50, 41-49. DOI: https://doi.org/10.1016/j.atmosenv.2012.01.005
- Breza-Boruta, B. (2015). Microbiological air pollution of production room of the meat processing plant as a potential threat to the workers. Environmental Medicine 18(4), 37-42 (in Polish)
- Bulski, K. (2017). Biological safety at selected pet stores in Cracow. Woda-Środowisko-Obszary Wiejskie, 17,1(57), 19-30 (in Polish).
- Bulski, K., Korta-Pepłowska, M. (2017). Microbiological quality of indoor air at reptile store. Woda-Środowisko-Obszary Wiejskie, 17, 2, 27-35 (in Polish).
- Chmiel, M.J., Frączek, K., Grzyb, J. (2015). The problems of microbiological air contamination monitoring. Woda-Środowisko-Obszary Wiejskie, 1(49), 17-27 (in Polish).
- Chen, Ch.T., Liu, B.H., Hsu, Ch.H., Liu, Ch.Ch., Liao, A.T.C. (2017). Bioaerosol investigation in three veterinary teaching hospitals in Taiwan. Taiwan Veterinary Journal, 43, 39-45. DOI: https://doi.org/10.1142/S1682648515500353
- Frączek, K., Chmiel, M.J., Bulski, K. (2018). Bacterial Aerosol at Selected Rooms of School Buildings of Malopolska Province. Rocznik Ochrona Środowiska, 20, 1583-1596 (in Polish).
- Galperin, M.Y., Yutin, N. (2013). A genomic update on clostridial phylogeny: Gram‐negative spore formers and other misplaced clostridia. Environmental Microbiology, 15(10), 2631-2641. DOI: 10.1111/1462-2920.12173
- Gatchalian, N.G., Wood, J., Lemieux, P.M., Betancourt, D., Kariher, P. (2010). Dry Thermal Resistance Of Bacillus Anthracis (Sterne) Spores And Spores Of Other Bacillus Species: Implications For Biological Agent Destruction Via Waste Incineration. Journal of Applied Microbiology, 109(1), 99-106. DOI: 10.1111/j.1365-2672.2009.04632.x
- Górny, R.L. (2010). Biological aerosols – a role of hygienic standards in the protection of environment and health. Environmental Medicine, 13(1), 41-51 (in Polish).
- Grzyb, J., Pawlak, K. (2021). Impact of bacterial aerosol, particulate matter, and microclimatic parameters on animal welfare in Chorzów (Poland) zoological garden. Environmental Science and Pollution Research, 28, 3318-3330. DOI: https://doi.org/10.1007/s11356-020-10680-9
- Harper, T.A.M., Bridgewater, S., Brown, L., Pow-Brown, P., Stewart-Johnson, A., Adesiyun, A.A. (2013). Bioaerosol sampling for airborne bacteria in a small animal veterinary teaching hospital. Infection Ecology and Epidemiology, 3, 1-7. DOI: 10.3402/iee.v3i0.20376
- Jo, W-K., Kang, J-H. (2006). Workplace exposure to bioaerosols in pet shops, pet clinics, and flower garden. Chemosphere, 65(10), 1755-1761. DOI: 10.1016/j.chemosphere.2006.04.068
- Kalogerakis, N., Paschali, D., Lekaditis, V., Pantidou, A., Eleftheriadis, K., Lazaridis, M. (2005). Indoor air quality – bioaerosol measurements in domestic and office premises. Journal of Aerosol Science, 36, 751-761. DOI: https://doi.org/10.1016/j.jaerosci.2005.02.004
- Kane, J., Summerbell, R., Sigler, L., Krajden, S., Land. G. (1997). Laboratory Handbook of Dermatophytes. California: Star. ISBN 0-89863-157-2.
- Katial, R.K., Zhang, Y., Jones, R.H., Dyer, P.D. (1997). Atmospheric mold spore counts in relation to meteorological parameters. International Journal Biometeorology, 41, 17-22. DOI: 10.1007/s004840050048
- Li, D.W., Kendrick, B. (1995). A year-round study on functional relationships of airborne fungi with meteorological factors. International Journal of Biometeorology, 39(2), 74-80. DOI: https://doi.org/10.1007/BF01212584
- Małecka-Adamowicz, M., Kubera, Ł., Jankowiak, E., Dembowska, E. (2019). Microbial diversity of bioaerosol inside sports facilities and antibiotic resistance of isolated Staphylococcus spp. Aerobiologia, 35, 731-742. DOI: https://doi.org/10.1007/s10453-019-09613-y
- Menetrez, M.Y., Foarde, K.K., Dean, T.R., Betancourt, D.A. (2010). The effectiveness of UV irradiation on vegetative bacteria and fungi surface contamination. Chemical Engineering Journal, 157, 443-450. DOI: https://doi.org/10.1016/j.cej.2009.12.004
- Owen, M.K., Ensor, D.S. (1992). Airborne particles size and sources fund in indoor air. Atmospheric Environment, 12(26A), 2149-2162.
- Pitt, J.I. (2000). Toxigenic fungi and mycotoxins. British Medical Bulletin, 56, 184-192.
- Polymenakou, P.N. (2012). Atmosphere: A Source of Pathogenic or Beneficial Microbes? Atmosphere, 3(1), 87-102. DOI: https://doi.org/10.3390/atmos3010087
- Puspita, I.D., Kamagata, Y., Tanaka, M., Asano, K., Nakatsu, C.H. (2012). Are uncultivated bacteria really uncultivable? Microbes and Environments, 27(4), 356-366. DOI: 10.1264/jsme2.me12092
- Regulation of the Polish Minister of Health. (2005). https://www.pip.gov.pl/pl/f/v/19909/05%20ppb.pdf (in Polish).
- Rim, K.T., Lim, C.H. (2014). Biologically Hazardous Agents at Work and Efforts to Protect Workers' Health: A Review of Recent Reports. Safety and Health at Work, 5(2), 43-52. DOI: 10.1016/j.shaw.2014.03.006
- Sitkowska, J., Sitkowski, W., Sitkowski, Ł., Lutnicki, K., Adamek, Ł., Wilkołek, P. (2015). Seasonal microbiological quality of air in veterinary practices in Poland. Annals of Agricultural and Environmental Medicine, 22(4), 614-624. DOI: https://doi.org/10.5604/12321966.1185763
- Thorne, P.S., Kiekhaefer, M.S., Whitten, P., Donham, K.J. (1992). Comparison of bioaerosol sampling methods in barns housing swine. Applied and Environmental Microbiology, 58(8), 2543-2551. DOI: 10.1128/AEM.58.8.2543-2551.1992
- Wawrzkiewicz, K., Ziółkowska, G., Czajkowska, A., Wawrzkiewicz, J. (1994). Microsporum canis: the major etiological agent of ringworm in cats and dogs. Medycyna Weterynaryjna, 50(7), 320-322 (in Polish).
- Weese, J.S., Peregrine, A.S., Armstrong, J. (2002). Occupational health and safety in small animal veterinary practice: Part I – Nonparasitic zoonotic diseases. The Canadian Veterinary Journal, 43, 631-636.
- Wlazło, A., Górny, R.L., Złotkowska, R., Ławniczek, A., Łudzeń-Izbińska, B., Harkawy, A.S., Anczyk, E. (2008). Worker's exposure to selected biological agents in libraries of Upper Silesia. Medycyna Pracy, 59(2), 159-170 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2630dfb-db81-48b4-bbdb-328bd8ffe9d1