PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A two-stage model of an arteriovenous fistula maturation process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: An arteriovenous fistula has been a widely accepted vascular access for hemodialysis, however, a fistula maturation process is still not fully understood. In the short period of time, right after vein and artery shunting, the physical and biological changes take place mainly in the venous wall. A two-stage modeling method of arteriovenous fistula maturation process was proposed and presented. Methods: The first stage of the maturation was modeled with two-way coupled fluid structure interaction computer simulations. Whereas for the second, biological stage, a model was based on the change in the elasticity of the venous wall due to wall shear stress (WSS) modifications. Results: The relation between stress and radial and circumferential strain, based on Lame’s theory, makes possible to introduce a mathematical model defining modulus of elasticity, averaged WSS, and venous diameter as time functions. The presented model enables one to predict changes in the monitored parameters in the arteriovenous fistula taking place in the time longer than 90 days. Conclusions: We found that probably the majority of fistulas can be assessed to be mature too early, when the adequate blood flow rate is achieved but mean WSS still remains at the non-physiological level (>10 Pa).
Rocznik
Strony
139--153
Opis fizyczny
Bibliogr. 30 poz., tab., wykr.
Twórcy
  • Institute of Turbomachinery, Lodz University of Technology, ul. Wólczańska 219/223, 90-924 Łódź, Poland
  • Institute of Turbomachinery, Lodz University of Technology, Łódź, Poland
  • Institute of Turbomachinery, Lodz University of Technology, Łódź, Poland
  • Institute of Turbomachinery, Lodz University of Technology, Łódź, Poland
Bibliografia
  • [1] ARORA D., BEHR M., PASQUALI M., Tensor-Based Measure for Estimating Blood Damage, Artif. Organs, 2004, 28 (11), 1002–1015.
  • [2] BOTTI L., CANNEYT K.V., KAMINSKY R., CLAESSENS T., PLANKEN R.N., VERDONCK P., REMUZZI A., ANTIGA L., Numerical Evaluation and Experimental Validation of Pressure Drops Across a Patient-Specific Model of Vascular Access for Hemodialysis, Cardiovasc. Eng. Technol., 2013, 4 (4), 485–499.
  • [3] BRESCIA M.J., CIMINO J.E., APPEL K., HURWICH B.J., Chronic Hemodialysis Using Venipuncture and a Surgically Created Arteriovenous Fistula, N. Engl. J. Med., 1966, 275(20), 1089–1092.
  • [4] BROWNE L.D., WALSH M.T., GRIFFIN P., Experimental and Numerical Analysis of the Bulk Flow Parameters Within an Arteriovenous Fistula, Cardiovasc. Eng. Technol., 2015, 6 (4), 450–462.
  • [5] CAROLI A., MANINI S., ANTIGA L., PASSERA K., ENE-IORDACHE B., ROTA S., REMUZZI G., BODE A., LEERMAKERS J., VAN DE VOSSE F.N., VANHOLDER R., MALOVRH M., TORDOIR J., REMUZZI A., Validation of a Patient-Specific Hemodynamic Computational Model for Surgical Planning of Vascular Access in Hemodialysis Patients, Kidney Int., 2013, 84 (6), 1237–1245.
  • [6] CHATZIZISIS Y.S., COSCUN A.U., JONAS M., EDELMAN E., Role of Endothelial Shear Stress in the Natural History of Coronary Atherosclerosis and Vascular Remodeling, J. Am. Coll. Cardiol., IEEE T. Bio.-Med. Eng., 2007, 49 (25), 2379–2393.
  • [7] CHIU J.-J., CHIEN S., Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives, Physiol. Rev., 2011, 91 (1), 327–387.
  • [8] COLLEY E., CARROLL J., THOMAS S., VARCOE R.L., SIMMONS A., BARBER T., A Methodology for Non-Invasive 3-D Surveillance of Arteriovenous Fistulae Using Freehand Ultrasound, 2018, 65 (8), 1885–1891.
  • [9] CORPATAUX J.-M., HAESLER E., SILACCI P., RIS H.B., HAYOZ D., Low-Pressure Environment and Remodelling of the Forearm Vein in Brescia-Cimino Haemodialysis Access, Nephrol. Dial. Transplant., 2002, 17 (6), 1057–1062.
  • [10] DIXON B.S., Why Don’t Fistulas Mature?, Kidney Int., 2006, 70 (8), 1413–1422.
  • [11] ENE-IORDACHE B., MOSCONI L., ANTIGA L., BRUNO S., ANGHILERI A., REMUZZI G., REMUZZI A., Radial Artery Remodeling in Response to Shear Stress Increase Within Arteriovenous Fistula for Hemodialysis Access, Endothelium, 2003, 10 (2), 95–102.
  • [12] FITTS M.K., PIKE D.B., ANDERSON K., SHIU Y.T., Hemodynamic Shear Stress and Endothelial Dysfunction in Hemodialysis Access, Open Urol. Nephrol. J., 2014, 7 (Suppl. 1 M5), 33–44.
  • [13] JODKO D., OBIDOWSKI D., REOROWICZ P., JÓŹWIK K., Blood Flows in the End-to-End Arteriovenous Fistulas: Unsteady and Steady State Numerical Investigations of Three Patient-Specific Cases, Biocybern. Biomed. Eng., 2017, 37 (3), 528–539.
  • [14] JODKO D., PALCZYŃSKI T., REOROWICZ P., MIAZGA K., OBIDOWSKI D., JÓŹWIK K., Determination of a Pressure Drop in the Arteriovenous Fistula with Fluid Structure Interaction Simulations and In Vitro Methods, Proc. of the ASME International Mechanical Engineering Congress and Exposition, IMECE 2017, Tampa, USA, DOI: 10.1115/IMECE2017-70402.
  • [15] KONNER K., NONNAST-DANIEL B., RITZ E., The Arteriovenous Fistula, J. Am. Soc. Nephrol., 2003, 14 (6), 1669–1680.
  • [16] LILLIE M.A., SHADWICK R.E., GOSLINE J.M., Mechanical Anisotropy of Inflated Elastic Tissue From the Pig Aorta, J. Biomech., 2010, 43 (11), 2070–2078.
  • [17] LU X., ZHAO J.B., WANG G.R., GREGERSEN H., KASSAB G.S., Remodeling of the Zero-Stress State of Femoral Arteries in Response to Flow Overload, Am. J. Physiol. Heart. Circ. Physiol., 2001, 280 (4), 1547–1559.
  • [18] MANINI S., ANTIGA L., BOTTI L., REMUZZI A., pyNS: An Open-Source Framework for 0D Haemodynamic Modelling, Ann. Biomed. Eng., 2015, 43 (6), 1461–1473.
  • [19] MANINI S., PASSERA K., HUBERTS W., BOTTI L., ANTIGA L., REMUZZI A., Computational Model for Simulation of Vascular Adaptation Following Vascular Access Surgery in Haemodialysis Patients, Comput. Methods Biomech. Biomed. Engin., 2014, 17 (12), 1358–1367.
  • [20] MENTER F.R., Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA J., 1994, 32 (8), 1598–1605.
  • [21] MORBIDUCCI U., PONZINI R., NOBILI M., MASSAI D., MONTEVECCHI F.M., BLUESTEIN D., REDAELLI A., Blood Damage Safety of Prosthetic Heart Valves. Shear-Induced Platelet Activation and Local Flow Dynamics: A Fluid-Structure Interaction Approach, J. Biomech., 2009, 42 (12), 1952–1960.
  • [22] NITTA K., MASAKAN I., HANAFUSA N., TANIGUCHI M., HASEGAWA T. et al., Annual dialysis data report 2017, JSDT Renal Data Registry, Ren. Replace Ther., 2019, 5 (1), 1–44.
  • [23] OCHSNER A.JR., COLP R.JR., BURCH G.E., Normal Blood Pressure in the Superficial Venous System of Man at Rest in the Supine Position, Circulation, 1951, 3, 674–680.
  • [24] REMUZZI A., BOZZETTO M., Biological and Physical Factors Involved in the Maturation of Arteriovenous Fistula for Hemodialysis, Cardiovasc. Eng. Technol., 2017, 8 (3), 273–279.
  • [25] REMUZZI A., BOZZETTO M., BRAMBILLA P., Is Shear Stress the Key Factor for AVF Maturation?, J. Vasc. Access, 2017, 18 (Suppl. 1), 10–14.
  • [26] REOROWICZ P., OBIDOWSKI D., KŁOSIŃSKI P., SZUBERT W., STEFAŃCZYK L., JÓŹWIK K., Numerical Simulations of the Blood Flow in the Patient-Specific Arterial Cerebral Circle Region, J. Biomech., 2014, 47 (7), 1642–1651.
  • [27] SIGOVAN M., RAYZ V., GASPER W., ALLEY H.F., OWENS C.D., SALONER D., Vascular Remodeling in Autogenous Arterio-Venous Fistulas by MRI and CFD, Ann. Biomed. Eng., 2013, 41 (4), 657–668.
  • [28] WESLY R.L., VAISHNAV R.N., FUCHS J.C., PETEL D.J., GREENFIELD J.C.JR., Static Linear and Nonlinear Elastic Properties of Normal and Arterialized Venous Tissue in Dog and Man, Circ. Res., 1975, 37 (4), 509–520.
  • [29] WONG V., WARD R., TAYLOR J., SELVAKUMAR S., HOW T.V., BAKRAN A., Factors Associated with Early Failure of Arteriovenous Fistulae for Haemodialysis Access, Eur. J. Vasc. Endovasc. Surg., 1996, 12 (2), 207–213.
  • [30] ZAROMYTIDOU M., SIASOS G., COSKUN A.U., LUCIER M., ANTONIADIS A.P., PAPAFAKLIS M.I., KOSKINAS K.C., ANDREOU I., FELDMAN C.L., STONE P.H., Intravascular Hemodynamics and Coronary Artery Disease: New Insights and Clinical Implications, Hell. J. Cardiol., 2016, 57 (6), 389–400.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c26278a5-ffc4-450f-92ea-86976f3fb21b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.