PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Life prediction for LY12CZ notched plate based on the continuum damage mechanics and the genetic algorithm and radial basis function method

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a new method based on the Continuum Damage Mechanics (CDM) and the Genetic Algorithm and Radial Basis Function neural network method (GARBF) is proposed to predict fatigue life of LY12CZ notched plate. Firstly, the multiaxial fatigue damage evolution equation is derived, and the fatigue life of the notched specimen is predicted based on the CDM method. Secondly, the RBF method is introduced to modify the relative deviation between the theoretical result and actual life. According to the drawbacks of the RBF method, the GA is adopted to optimize network parameters to effectively improve the model quality and reduce the training error. Then, the verification test indicates that the combined method of CDM and GARBF is able to reduce the average relative error of the results of fatigue life prediction to about 7%, which shows that the new method to predict the fatigue life is more reliable. At last, compared with the predicted results of the traditional Back Propagation (BP) neural network, the GARBF model proposed in this paper has a better optimization effect and the result is more stable. This research provides a feasible way to predict the fatigue lives of the notched plate based on the CDM and GARBF method.
Słowa kluczowe
Rocznik
Strony
1109--1122
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • School of Aeronautics Science and Engineering, Beihang University, Beijing, China
autor
  • School of Aeronautics Science and Engineering, Beihang University, Beijing, China
Bibliografia
  • 1. Camacho-Vallejo J.-F., Mar-Ortiz J., López-Ramos F., Rodrıguez R.P., 2015, A genetic algorithm for the bi-level topological design of local area networks, Plos One, 10, 6, 1-21
  • 2. Gao J., He Q., Zhan Z., Gao X., 2016, Dynamic modeling based on fuzzy Neural Network for a billiard robot, IEEE, 13th International Conference on Networking, Sensing and Control
  • 3. Gao J., Zhu M., Liang H., Guo X., He Q., 2015, Design of the multiple Neural Network compensator for a billiard robot, IEEE, International Conference on Networking, Sensing and Control, 17-22
  • 4. Goldberg D.E., Samtani M.P., 2015, Engineering optimization via genetic algorithm, Proceedings of 9th Conference Electronic Computation, ASCE, 471-482
  • 5. Guo H., Yin J., Zhao J., Huang Z., Pan Y., 2014, Prediction of fatigue life of packaging EMC material based on RBF-SVM, International Journal of Materials and Product Technology, 49, 1, 5-17
  • 6. Karolczuk A., Macha E., 2005, A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials, International Journal of Fracture, 134, 3-4, 267-304
  • 7. Lemaitre J., Chaboche J.L., 1990, Mechanics of Solid Materials, Cambridge University Press
  • 8. Li B., Santos J.L.T., Freitas M., 2000, A unified numerical approach for multiaxial fatigue limit evaluation, Mechanics of Structures and Machines, 28, 1, 85-103
  • 9. Liu C.H., Xuan F.Z., 2008, A determination method of important affecting parameters on low circle fatigue life, Materials for Mechanical Engineering, 32, 12, 22-24
  • 10. Monteiro R.L.S., Carneiro T.K.G., Fontoura J.R.A., da Silva V.L., Moret M.A., Pereira H.B., 2016, A model for improving the learning curves of artificial neural networks, Plos One, 11, 2
  • 11. Movaghghar A., Lvov G.I., 2012, A method of estimating wind turbine blade fatigue life and damage using continuum damage mechanics, International Journal of Damage Mechanics, 21, 6, 810-821
  • 12. Nagarajan R., Jonkman J.N., 2013, A neural network model to translate brain developmental events across mammalian species, Plos One, 8, 1
  • 13. Pujol J.C.F., Pinto J.M.A., 2011, A neural network approach to fatigue life prediction, International Journal of Fatigue, 33, 3, 313-322
  • 14. Reid D., Hussain A.J., Tawfik H., 2013, Financial time series prediction using spiking neural networks, Plos One, 9, 8, e103656-e103656
  • 15. Schijve J., 2001, Fatigue of Structures and Materials, Springer
  • 16. Suresh S., 1998, Fatigue of Materials, Cambridge (UK), Cambridge University Press
  • 17. Upadhyaya Y.S., Sridhara B.K., 2012, Fatigue life prediction: a continuum damage mechanics and fracture mechanics approach, Materials and Design, 35, 220-224
  • 18. Wu X., 1996, Handbook of Mechanical Properties of Aircraft Structural Metals, China Aviation Industry Press, Beijing
  • 19. Zhan Z., Hu W., Li B., Zhang Y., Meng Q., 2017a, Continuum damage mechanics combined with the extended finite element method for the total life prediction of a metallic component, International Journal of Mechanical Sciences, 124, 48-58
  • 20. Zhan Z., Hu W., Meng Q., Guan Z., 2017b, Fatigue life and defect tolerance calculation for specimens with foreign object impact and scratch damage, Archive of Applied Mechanics, 88, 3, 373-390
  • 21. Zhan Z., Hu W., Meng Q., Shi S., 2016, Continuum damage mechanics-based approach to the fatigue life prediction for 7050-T7451 aluminum alloy with impact pit, International Journal of Damage Mechanics, 25, 7, 943-966
  • 22. Zhan Z., Hu W., Shen F., Meng Q., Pu J., Guan Z., 2017c, Fatigue life calculation for a specimen with an impact pit considering impact damage, residual stress relaxation and elasticplastic fatigue damage, International Journal of Fatigue, 96, 208-223
  • 23. Zhan Z., Hu W., Zhang M., Meng Q., 2015a, A study on the effect of surface defect on the fatigue performance of metal component based on damage mechanics, Mechanics, 21, 1, 5-10
  • 24. Zhan Z., Hu W., Zhang M., Meng Q., 2015b, Revised damage evolution equation for high cycle fatigue life prediction of aluminum alloy LC4 under uniaxial loading, Applied Mathematics and Mechanics, 36, 9, 1185-1196
  • 25. Zhan Z., Hu W., Zhang M., Meng Q., 2015c, The fatigue life prediction for structure with surface scratch considering cutting residual stress, initial plasticity damage and fatigue damage, International Journal of Fatigue, 74, 173-182
  • 26. Zhan Z., Hu W., Zhang M., Zhu Y., Meng Q., 2013, Experimental method for and theoretical research on defect tolerance of fixed plate based on damage mechanics, Chinese Journal of Aeronautics, 26, 5, 1195-1201
  • 27. Zhan Z., Meng Q., Hu W., Sun Y., Shen F., Zhang Y., 2017d, Continuum damage mechanics based approach to study the effects of the scarf angle, surface friction and clamping force over the fatigue life of scarf bolted joints, International Journal of Fatigue, 102, 59-78
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2608e0c-24cf-4a5d-8d05-944a50a3d5a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.