Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A 3D model of collected time-domain induced polarization (IP) and electrical resistivity tomography (ERT) data is compiled by geostatistical methods as well as studying spatial correlation among the database. Mesgaran copper deposit, located in Birjand eastern Iran, was chosen to compile and verify the model, leading to five parallel surveyed IP and ERT profiles with dipole–dipole arrays. The collected data were inverted, and then 2D models of IP and ER were prepared; also 3D inversion was done. Afterward, the 3D model has been built by geostatistical methods. Correspondingly, the anomalies threshold was detected by fractal methods and the estimation variance and Kriging efficiency were calculated to validate the modeling. The mineralization zones were determined according to the classified anomalies and those with the lowest error. Results indicated a high correlation between anomalies identified from the model and mineralization. The results made it possible to construct 3D models from surveyed 2D data with acceptable error level.
Wydawca
Czasopismo
Rocznik
Tom
Strony
959--971
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
autor
- Faculty of Mining and Metallurgical Engineering Amirkabir University of Technology TehranIran
autor
- Faculty of Mining and Metallurgical Engineering Amirkabir University of Technology TehranIran
Bibliografia
- 1. Aghanabati A (2009) Geology of Iran, ministry and mines. Geological Survey of Iran, Tehran
- 2. Ayoobi I, Dehkordi R, Shiva M (2013) Anomaly recognition in stream sediment geochemical exploration using factor analysis in Mesgaran area of Birjand, eastern Iran. J Econ Geol 5(1):105–115. https://doi.org/10.22067/econg.v5i1.22913
- 3. Bentley LR, Gharibi M (2004) Case History Two- and three-dimensional electrical resistivity imaging at a heterogeneous remediation site. Geophysics 69(3):674–680
- 4. Biswas A, Sharma SP (2016) Integrated geophysical studies to elicit the structure associated with Uranium mineralization around South Purulia Shear Zone, India: a review. Ore Geol Rev 72:1307–1326
- 5. Bohling G (2007) S-GeMS tutorial notes in hydrogeophysics: theory, methods, and modeling. Boise State University, Boise, pp 1–26
- 6. Dahlin T (2001) The development of DC resistivity imaging techniques. Comput Geosci 27(9):1019–1029
- 7. Ferdows MS, Ramazi H (2015) Application of the fractal method to determine the membership function parameter for geoelectrical data (case study: hamyj copper deposit, Iran). J Geophys Eng 12:909–921
- 8. Fink JB, McAlister EO, Sternberg BK, Wieduwilt WG, Ward SH (1990) Induced polarization, applications and case histories. Investigations in Geophysics, Oklahoma
- 9. Gharibi M, Bentley LR (2005) Resolution of 3-D electrical resistivity images from inversions of 2-D orthogonal lines. J Environ Eng Geophys 10(4):339–349
- 10. Ghorbani M (2013) The economic geology of Iran: mineral deposits and natural resources, Chapter 2; a summary of geology of Iran, pp 54–65, Springer geology. https://doi.org/10.1007/978-94-007-5625-0_2
- 11. Gurin G, Tarasov A, Ilyin YT, Titov K (2015) Application of the Debye decomposition approach to analysis of induced-polarization profiling data (Julietta gold-silver deposit, Magadan Region). Russ Geol Geophys 56:1757–1771. https://doi.org/10.1016/j.rgg.2015.11.008
- 12. Hezarkhani A (2008) Hydrothermal evolution of the miduk porphyry copper system, Kerman, Iran: a fluid inclusion investigation. Int Geol Rev 50(7):665–684
- 13. Huang J, Zhao B, Chen Y, Zhao P (2010) Bidimensional empirical mode decomposition (BEMD) for extraction of gravity anomalies associated with gold mineralization in the Tongshi gold field, Western Shandong Uplifted Block, Eastern China. Comput Geosci 36(7):987–995
- 14. Jodeiri B, Faramarz S, Ardejani D, Moradzadeh A (2016) Mapping the flow pathways and contaminants transportation around a coal washing plant using the VLF-EM, Geo-electrical and IP techniques—A case study, NE Iran. Environ Earth Sci 75(1):1–13. https://doi.org/10.1007/s12665-015-4776-x
- 15. Journel AG, Huijbregts CHJ (1978) Mining geostatistics. Centre de Geostatistique Fontainebleau, France
- 16. Khesin B, Alexeyev V, Eppelbaum L (1997) Rapid methods for interpretation of induced polarization anomalies. J Appl Geophys 37(1):17–130
- 17. Krige DG (1996) A practical analysis of the effects of spatial structure and of data available and accessed on the conditional bases in ordinary kriging. In: Baafi EY, Schofield NA (eds) Geostatistics Wollongong 1996. Kluwer, pp 799–810
- 18. Kumar D, Ahmed S, Krishnamurthy NS, Dewandel B (2007) Reducing ambiguities in vertical electrical sounding interpretations: a geostatistical application. J Appl Geophys 62(1):16–32
- 19. Lamorey G, Jacobson E (1995) Estimation of semivariogram parameters and evaluation of the effects of data sparsity. Math Geol 27(3):327–358
- 20. Loke MH (2018) Toturial 2-D and 3-D electrical imaging survey. www.geotomosoft.com
- 21. Loke MH, Barker RD (1996a) Practical techniques for 3D resistivity surveys and data inversion. Geophys Prospect 44(3):499–523
- 22. Loke MH, Barker RD (1996b) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys Prospect 44(1):131–152
- 23. Loke MH, Dahkin T (2010) Mthods to rsduce banding effect in 3-D Resistivity inversion. Near Surface 2010—16th European meeting of environmental and engineering geophysics, 6–8 September 2010, Zurich
- 24. Loke MH, Chambers JE, Ogilvy RD (2006) Inversion of 2D spectral induced polarization imaging data. Geophys Prospect 54(3):287–301
- 25. Mammo T (2013) Geophysical models for the Cu-dominated VHMS mineralization in Katta District, Western Ethiopia. Nat Resour Res 22(1):5–18
- 26. Mandelbrot BB (1983) The fractal geometry of nature. Freeman, New York
- 27. Martínez-Moreno FJ, Pedrera A, Ruano P, Galindo-Zaldívar J, Martos-Rosillo S, González-Castillo L, Sánchez-Úbeda JP, Marín-Lechado C (2013) Combined microgravity, electrical resistivity tomography and induced polarization to detect deeply buried caves: algaidilla cave (Southern Spain). Eng Geol 162:67–78. https://doi.org/10.1016/j.enggeo.2013.05.008
- 28. Martínez-Moreno FJ, Galindo-Zaldívar J, Pedrera A, Teixido T, Ruano P, Peña JA, González-Castillo L, Ruiz-Constán A, López-Chicano M, Martín-Rosales W (2014) Integrated geophysical methods for studying the karst system of Gruta de las Maravillas (Aracena, Southwest Spain). J Appl Geophys 107:149–162. https://doi.org/10.1016/j.jappgeo.2014.05.021
- 29. Martínez-Moreno FJ, Galindo-Zaldívar J, Pedrera A, González-Castillo L, Ruano P, Calaforra JM, Guirado E (2015) Detecting gypsum caves with microgravity and ERT under soil water content variations (Sorbas, SE Spain). Eng Geol 193:38–48. https://doi.org/10.1016/j.enggeo.2015.04.011
- 30. Maurya PK, Ronde VK, Fiandaca G, Balbarini N, Auken E, Bjerg LP, Christiansen AV (2017) Detailed landfill leachate plume mapping using 2D and 3D electrical resistivity tomography- with correlation to ionic strength measured in screens. J Appl Geophys 138:1–8
- 31. Morari F, Castrignan A, Pagliarin C (2009) Application of multivariate geostatistics in delineating management zones within a gravelly vineyard using geo-electrical sensors. Comput Electron Agric 68(1):97–107
- 32. Mostafaie K, Ramazi H (2015) Application of electrical resistivity method in sodium sulfate deposits exploration, case study: Garmab, Iran. J Biodivers Environ Sci 6(2):2220–6663
- 33. Mostafaie K, Ramazi HR, Jalali M (2014) Application of integrated geophysical and geostatistical methods in Amiriyeh site classification. Geodyn Res Int Bull (GRIB) 2(2):1–15
- 34. Park G, Oh S, Lee H, Kim JH, Kwon BD (2011) Geostatistical integration of gravity and magnetotelluric data to enhance resolution of geologic structure. J Appl Geophys 73(3):232–242
- 35. Ramazi H, Jalali M (2014) Contribution of geophysical inversion theory and geostatistical simulation to determine geoelectrical anomalies. Stud Geophys Geod 59:97–112
- 36. Ramazi H, Mostafaie K (2013) Application of integrated geoelectrical methods in Marand (Iran) manganese deposit exploration. Arab J Geosci 6(8):2961–2970
- 37. Reynolds JM (2011) An introduction to applied and environmental geophysics. Geophysics 1:696
- 38. Reza MS, Kamran M, Hamidreza R (2017) Improving bitumen detection in resistivity surveys by using induced polarisation data. Explor Geophys. https://doi.org/10.1071/EG17032
- 39. Sevil J, Gutierrez F, Zarroca M, Desira G, Carbonela D, Guerrero J, Linares R, Roque C, Fabregat I (2017) Sinkhole investigation in an urban area by trenching in combination with GPR, ERT and high-precision leveling. Manteled evaporate karst of Zaragoza city, NE Spain. Eng Geol 213:9–20
- 40. Snowden DV (2001) Practical interpretation of mineral resource and ore reserve classification guidelines, Mineral Resource and Ore Reserve Estimation–The AusIMM Guide to Good Practice (Monograph 23), pp 643–652
- 41. Sultan SA, Mansour SA, Santos FM, Helaly AS (2009) Geophysical exploration for gold and associated minerals, case study: Wadi El Beida area, South Eastern Desert, Egypt. J Geophys Eng 6(4):345–356
- 42. Tavakoli S, Dehghannejad M, Ml GJ, Bauer TE, Weihed P, Elming S (2016) Potential field, geoelectrical and reflection seismic investigation for massive Sulfhide exploration in the Skellefte mining District, Northern Sweden. Acta Geophys 64(6):2117–2199. https://doi.org/10.1515/acgeo-2016-0088
- 43. Technical report of the geological map of Mesgaran (2012) Mining Organization of South Khorasan Province
- 44. Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics. Cambridge University Press, Cambridge
- 45. Vesnaver A, Bridle R, Henry B, Ley R, Rowe R, Wyllie A (2006) Geostatistical integration of near-surface geophysical data. Geophys Prospect 54(6):763–777
- 46. White RMS, Collins S, Loke MH (2003) Resistivity and IP arrays, optimised for data collection and inversion. Explor Geophys 34(4):229–232
- 47. Zhou B, Dahlin T (2003) Properties and effects of measurement errors on 2D resistivity imaging surveying. Near Surf Geophys 1:105–117
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c25aade5-3df7-474d-8fce-09f5ca077f07