PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Phytochelatins of Cladophora rupestris in Pb2+ absorption and its detoxification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Phytochelatins (PCs) exist widely in plants and are closely related to plant resistance to heavy metals (HMs). Glutathione (GSH) and nonprotein thiols (NPTs) are the major components of PCs. This study investigates the role of the PCs of Cladophora rupestris in Pb2+ accumulation and detoxification. The distribution of Pb2+ in the PCs of C. rupestris was studied. FTIR and XPS are used to characterize the chelating power of Pb2+ with PCs in C.rupestris. The curve fitting of the secondary protein structure is used to identify the functional groups with Pb2+. Results showed that the content of Pb2+ in the PCs of C. rupestris increased with an increase in Pb2+ stress. Pb content increased to 352 and 314 mg/kg in NPTs and GSH, respectively, when Pb stress concentration reached 7.5 mg/dm3 . The Pb2+ fraction of C. rupestris PCs reached a maximum of 10.8 and 9.3% in NPTs and GSH, respectively. The Pb2+ uptake by GSH and NPTs was 40–48% and 52–60%, respectively. Pb2+ bound with the PCs of C. rupestris, forming complexes that contained Pb–OOC, Pb–C=O, CO–Pb, –N=Pb, Pb–NH2, Pb–O, Pb–N–, Pb–C–, Pb–S, and Pb2+ with multiple groups of PCs as bridging ligand atoms.
Rocznik
Strony
31--42
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
autor
  • Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
autor
  • Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
autor
  • Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
autor
  • Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
autor
  • Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
  • School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, China
Bibliografia
  • [1] NANDA S., KUMAR G., MISHRA R., JOSHI R.K., Microbe-assisted alleviation of heavy metal toxicity in plants. A review, Geomicrobiol. J., 2022, 39 (3–5), 416–425. DOI: 10.1080/01490451.2021. 1979697.
  • [2] CHEN Q.Y., YANG L., LIU L.,LI X.X., LI H.D.,ZHANG Q.,CAO D.J., XPS and NMR analyze the combined forms of Pb in Cladophora rupestris subcells and its detoxification, Environ. Sci. Pollut. Res. Int., 2022, 29 (38), 57490–57501. DOI: 10.1007/s11356-022-19880-x.
  • [3] SHI G.L., LOU L.Q., LI D.J., HU Z.B., CAI Q.S., Phytochelatins play key roles for the difference in root arsenic accumulation of different Triticum aestivum cultivars in comparison with arsenate uptake kinetics and reduction, Chemosphere, 2017, 175, 192–199. DOI: 10.1016/j.chemosphere.2017.02.017.
  • [4] FISCHER S., KUHNLENZ T., THIEME M., SCHMIDT H., CLEMENS S., Analysis of plant Pb tolerance at realistic submicromolar concentrations demonstrates the role of phytochelatin synthesis for Pb detoxification, Environ. Sci. Technol., 2014, 48 (13), 7552–7559. DOI: 10.1021/es405234p.
  • [5] JACQUART A.,BRAYNER R.,EL HAGE CHAHINE J.M., HA-DUONG N.T.,Cd2+ and Pb2+ complexation by glutathione and the phytochelatins, Chem. Biol. Interact., 2017, 267, 2–10. DOI: 10.1016/j.cbi.2016.09.002.
  • [6] MAH V., JALILEHVAND F., Lead(II) complex formation with glutathione, Inorg. Chem., 2012, 51 (11), 6285–6298. DOI: 10.1021/ic300496t.
  • [7] CHEN Q.Y., YANG L., LIU L., QIAN L.W., TIAN K.L., ZHANG Q., CAO D.J., Combined forms of Pb and its detoxification and absorption in Cladophora rupestris subcells, Spectrochim. Acta, A, Mol. Biomol. Spectrosc., 2021, 248, 119190. DOI: 10.1016/j.saa.2020.119190.
  • [8] CAO D.J., WANG J.J., ZHANG Q., WEN Y.Z., DONG B., LIU R.J., YANG X., GENG G., Biodegradation of triphenylmethane dye crystal violet by Cedecea davisae, Spectrochim. Acta, A, Mol. Biomol. Spectrosc., 2019, 210, 9–13. DOI: 10.1016/j.saa.2018.11.004.
  • [9] CAO D.J., YANG X., GENG G., WAN X.C., MA R.X., ZHANG Q., LIANG Y.G., Absorption and subcellular distribution of cadmium in tea plant (Camellia sinensis cv. “Shuchazao”), Environ. Sci. Pollut. Res. Int., 2018, 25 (16), 15357–15367. DOI: 10.1007/s11356-018-1671-5.
  • [10] CHEN Q.Y., LIU L., YANG L., DONG B., WEN Y.Z., ZHANG Z., ZHANG Q., CAO D.J., Response of sulfhydryl compounds in subcells of Cladophora rupestris under Pb stress, Environ. Sci. Pollut. Res. Int., 2021, 28 (11), 13112–13123. DOI: 10.1007/s11356-020-11577-3.
  • [11] BOUGHRARA L., SEBBA F.Z., SEBTI H.,CHOUKCHOU-BRAHAM E.,BOUNACEUR B., KADA S.O.,ZAOUI F., Removal of Zn(II) and Ni(II) heavy metal ions by new alginic acid-ester derivatives materials, Carbohydr. Polym., 2021, 272, 118439. DOI: 10.1016/j.carbpol.2021.118439.
  • [12] CAO D.J., SHI X.D., LI H., XIE P.P., ZHANG H.M., DENG J.W., LIANG Y.G., Effects of lead on tolerance, bioaccumulation, and antioxidative defense system of green algae, Cladophora, Ecotoxicol. Environ. Saf., 2015, 112, 231–237. DOI: 10.1016/j.ecoenv.2014.11.007.
  • [13] IVANOVA T.M., MASLAKOV K.I., SIDOROV A.A., KISKIN M.A., LINKO R.V., SAVILOV S.V., LUNIN V.V., EREMENKO I.L., XPS detection of unusual Cu(II) to Cu(I) transition on the surface of complexes with redox-active ligands, J. Elect. Spectrosc. Rel. Phen., 2020, 238, 146878. DOI: 10.1016/j.elspec. 2019.06.010.
  • [14] LAI H., DENG J., WEN S., LIU Q., Elucidation of lead ions adsorption mechanism on marmatite surface by PCA-assisted ToF-SIMS, XPS and zeta potential, Min. Eng., 2019, 144, 106035. DOI: 10.1016 /j.mineng.2019.106035.
  • [15] YU S., SHENG L., MAO H., HUANG X., LUO L., LI Y., Physiological response of Conyza Canadensis to cadmium stress monitored by Fourier transform infrared spectroscopy and cadmium accumulation, Spectrochim. Acta, A, Mol. Biomol. Spectrosc., 2020, 229, 118007. DOI: 10.1016/j.saa.2019.118007.
  • [16] XIE P.P., DENG J.W., ZHANG H.M., MA Y.H., CAO D.J., MA R.X., LIU R.J., LIU C., LIANG Y.G., Effects of cadmium on bioaccumulation and biochemical stress response in rice (Oryza sativa L.), Ecotoxicol. Environ. Saf., 2015, 122, 392–398. DOI: 10.1016/j.ecoenv.2015.09.007.
  • [17] YANG S., ZHANG Q., YANG H., SHI H., DONG A., WANG L., YU S., Progress in infrared spectroscopy as an efficient tool for predicting protein secondary structure, Int. J. Biol. Macromol., 2022, 206, 175–187. DOI: 10.1016/j.ijbiomac.2022.02.104.
  • [18] SHARMA S., UTTAM K.N., Investigation of the manganese stress on wheat plant by attenuated total reflectance Fourier transform infrared spectroscopy, Spectrosc. Lett., 2010, 49 (8), 520–528. DOI: 10.1080 /00387010.2016.1212897.
  • [19] HOU X., LIU S., ZHANG Z., Role of extracellular polymeric substance in determining the high aggregation ability of anammox sludge, Water Res., 2015, 75, 51–62. DOI: 10.1016/j.watres.2015.02.031.
  • [20] LIU X.M., SHENG G.P., LUO H.W., ZHANG F., YUAN S.J., XU J., ZENG R.J., WU J.G., YU H.Q., Contribution of extracellular polymeric substances (EPS) to the sludge aggregation, Environ. Sci. Technol., 2010, 44 (11), 4355–4360. DOI: 10.1021/es9016766.
  • [21] LU Y.J., JIANG A.L., DOU B.R, WANG C., WANG C.H., Effect of Cd(II) and Zn(II) on growth and biochemical composition of alga Nitzschia closterium, J. Dalian Fisheries University, 2010, 25 (2), 178– 182. DOI: 10.16535/j.cnki.dlhyxb.2010.02.001.
  • [22] ALI I., PENG C., NAZ I., Removal of lead and cadmium ions by single and binary systems using phytogenic magnetic nanoparticles functionalized by 3-marcaptopropanic acid, Chinese J. Chem. Eng., 2019, 27 (4), 949–964. DOI: 10.1016/j.cjche.2018.03.018.
  • [23] LAI H., DENG J., WEN S., LIU Q., Elucidation of lead ions adsorption mechanism on marmatite surface by PCA-assisted ToF-SIMS, XPS and zeta potential, Min. Eng., 2019, 144, 106035. DOI: 10.1016/j.mineng. 2019.106035.
  • [24] FENG Z., CHEN H., LI H., YUAN R., WANG F., CHEN Z., ZHOU B., Preparation, characterization, and application of magnetic activated carbon for treatment of biologically treated papermaking wastewater, Sci. Total Environ., 2020, 713, 136423. DOI: 10.1016/j.scitotenv.2019.136423.
  • [25] ZATSEPIN D.A., BOUKHVALOV D.W., GAVRILOV N.V., KURMAEV E.Z., ZATSEPIN A.F., CUI L., SHUR V.Y., ESIN A.A., XPS-and-DFT analyses of the Pb 4f –Zn 3s and Pb 5d–O 2s overlapped ambiguity contributions to the final electronic structure of bulk and thin-film Pb-modulated zincite, Appl. Surf. Sci., 2017, 405, 129–136. DOI: 10.1016/j.apsusc.2017.01.310.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c256f764-84e8-42a6-89c0-6dc4b719acd3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.