Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Cu-CNT composites were fabricated by a flake powder metallurgy method, and their microhardness, electrical conductivity, frictional and wear properties were investigated. Homogenous distribution of CNTs in fine-grained Cu matrix was obtained using this process. Microhardness increased with the addition of CNT vol% up to 8% to the Cu matrix, while the conductivity decreased to 79.2 IACS %. Results showed that CNTs play a major role in improving wear resistance by forming a CNT-rich film that acts as a solid lubricant layer. In the synthesized composites, Cu- 4 vol% CNT composite exhibited the best wear and friction properties. The dominant wear mechanisms for the Cu-CNT composites were plastic deformation, abrasion, and flake formation-spalling. Also, a newly modified correlation was proposed for the theoretical calculation of the friction coefficient of Cu-CNT composites consisting agglomerated CNTs.
Czasopismo
Rocznik
Tom
Strony
694--706
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
autor
- Department of Materials Engineering, Faculty of Engineering, University of Maragheh, Maragheh, P.O. Box 83111- 55181, Iran
autor
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Ave., Tehran, Iran
autor
- Ceramic Division, Materials and Energy Research Center, P.O. Box 31787-316, Karaj, Iran
autor
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, 790-784, South Korea
Bibliografia
- [1] O. Tazegul, V. Dylmishi, H. Cimenoglu, Copper matrix composite coatings produced by cold spraying process for electrical applications, Arch. Civil Mech. Eng. 16 (2016) 344– 350.
- [2] T. Varo, A. Canakci, Effect of the CNT content on microstructure, physical and mechanical properties of Cu-based electrical contact materials produced by flake powder metallurgy, Arab. J. Sci. Eng. 40 (2015) 2711–2720.
- [3] M. Akbarpour, S. Alipour, Wear and friction properties of spark plasma sintered SiC/Cu nanocomposites, Ceram. Int. 43 (2017) 13364–13370.
- [4] M. Akbarpour, M. Farvizi, H. Kim, Microstructural and kinetic investigation on the suppression of grain growth in nanocrystalline copper by the dispersion of silicon carbide nanoparticles, Mater. Des. 119 (2017) 311–318.
- [5] R. Sathiskumar, N. Murugan, I. Dinaharan, S.J. Vijay, Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing, Mater. Character. 84 (2013) 16–27.
- [6] N. Selvakumar, S.C. Ezhil Singh, Influence of nano ZrC content on tribological analysis, microstructure and mechanical properties of Cu–4Cr matrix composites produced by hot extrusion, Arch. Civil Mech. Eng. 16 (2016) 537–552.
- [7] I. Dinaharan, K. Kalaiselvan, E.T. Akinlabi, J. Paulo Davim, Microstructure and wear characterization of rice husk ash reinforced copper matrix composites prepared using friction stir processing, J. Alloys Compd. 718 (2017) 150–160.
- [8] M.R. Akbarpour, M. Najafi, S. Alipour, H.S. Kim, Hardness, wear and friction characteristics of nanostructured Cu–SiC nanocomposites fabricated by powder metallurgy route, Mater. Today Commun. (2018), http://dx.doi.org/10.1016/j. mtcomm.2018.11.001.
- [9] S.C. Tjong, Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets, Mater. Sci. Eng. R: Rep. 74 (2013) 281–350.
- [10] C. Donnet, A. Erdemir, Solid lubricant coatings: recent developments and future trends, Tribiol. Lett. 17 (2004) 389–397.
- [11] A.D. Moghadam, E. Omrani, P.L. Menezes, P.K. Rohatgi, Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene – a review, Compos. B: Eng. 77 (2015) 402–420.
- [12] M.R. Akbarpour, H. Mousa Mirabad, S. Alipour, Microstructural and mechanical characteristics of hybrid SiC/Cu composites with nano- and micro-sized SiC particles, Ceram. Int. (2018), http://dx.doi.org/10.1016/j.ceramint.2018.10.235.
- [13] K. Rajkumar, S. Aravindan, Tribological behavior of microwave processed copper–nanographite composites, Tribol. Int. 57 (2013) 282–296.
- [14] M.R. Akbarpour, Analysis of load transfer mechanism in Cu reinforced with carbon nanotubes fabricated by powder metallurgy route, J. Mater. Eng. Perform. 25 (2016) 1749–1756.
- [15] S. Hong, S. Myung, Nanotube electronics: a flexible approach to mobility, Nat. Nanotehnol. 2 (2007) 207–208.
- [16] Q. Ngo, B.A. Cruden, A.M. Cassell, G. Sims, M. Meyyappan, J. Li, et al., Thermal interface properties of Cu-filled vertically aligned carbon nanofiber arrays, Nano Lett. 4 (2004) 2403–2407.
- [17] W. Chen, J. Tu, L. Wang, H. Gan, Z. Xu, X. Zhang, Tribological application of carbon nanotubes in a metal-based composite coating and composites, Carbon 41 (2003) 215–222.
- [18] T. Varol, A. Canakci, The effect of type and ratio of reinforcement on the synthesis and characterization Cu-based nanocomposites by flake powder metallurgy, J. Alloys Compd. 649 (2015) 1066–1074.
- [19] S. Dong, X.-b. Zhang, Sliding wear property of Cu-based composite materials reinforced by carbon nanotube, Tribology – Beijing 19 (1999) 1–6.
- [20] P.J. Harris, Carbon nanotube composites, Int. Mater. Rev. 49 (2004) 31–43.
- [21] J. Yu, N. Grossiord, C.E. Koning, J. Loos, Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution, Carbon 45 (2007) 618–623.
- [22] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, et al., Chemical oxidation of multiwalled carbon nanotubes, Carbon 46 (2008) 833–840.
- [23] L. Vaisman, H.D. Wagner, G. Marom, The role of surfactants in dispersion of carbon nanotubes, Adv. Colloid Interface Sci. 128 (2006) 37–46.
- [24] L. Bokobza, J. Zhang, Raman spectroscopic characterization of multiwall carbon nanotubes and of composites, Express Polym. Lett. 6 (2012) 601–608.
- [25] S.C. Ezhil Singh, N. Selvakumar, Effect of milled B4C nanoparticles on tribological analysis, microstructure and mechanical properties of Cu–4Cr matrix produced by hot extrusion, Arch. Civil Mech. Eng. 17 (2017) 446–456.
- [26] S.C. Tjong, Carbon Nanotube Reinforced Composites: Metal and Ceramic Matrices, John Wiley & Sons, 2009.
- [27] R. George, K. Kashyap, R. Rahul, S. Yamdagni, Strengthening in carbon nanotube/aluminium (CNT/Al) composites, Scr. Mater. 53 (2005) 1159–1163.
- [28] D. Poirier, R. Gauvin, R.A. Drew, Structural characterization of a mechanically milled carbon nanotube/aluminum mixture, Compos. A: Appl. Sci. Manuf. 40 (2009) 1482–1489.
- [29] P. Jenei, E. Yoon, J. Gubicza, H. Kim, J. Lábár, T. Ungár, Microstructure and hardness of copper–carbon nanotube composites consolidated by high pressure torsion, Mater. Sci. Eng. A 528 (2011) 4690–4695.
- [30] R.S. Ruoff, D. Qian, W.K. Liu, Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements, C.R. Phys. 4 (2003) 993–1008.
- [31] B. Demczyk, Y. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, et al., Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes, Mater. Sci. Eng. A 334 (2002) 173–178.
- [32] W.A. De Heer, Nanotubes and the pursuit of applications, MRS Bull. 29 (2004) 281–285.
- [33] H. Choi, S. Lee, D. Bae, Wear characteristic of aluminum- based composites containing multi-walled carbon nanotubes, Wear 270 (2010) 12–18.
- [34] H. Li, A. Misra, Y. Zhu, Z. Horita, C.C. Koch, T.G. Holesinger, Processing and characterization of nanostructured Cu-carbon nanotube composites, Mater. Sci. Eng. A 523 (2009) 60–64.
- [35] S.S. Razavi-Tousi, J.A. Szpunar, Microstructural evolution and grain subdivision mechanisms during severe plastic deformation of aluminum particles by ball milling, Philos. Mag. 95 (2015) 1425–1447.
- [36] R. Sundaram, T. Yamada, K. Hata, A. Sekiguchi, The influence of Cu electrodeposition parameters on fabricating structurally uniform CNT-Cu composite wires, Mater. Today Commun. 13 (2017) 119–125.
- [37] P. Sharma, A. Kumar, M.K. Banerjee, Structural evolution in mechanically alloyed and spark plasma sintered iron– 0.15 wt.% MWCNT composite, J. Mater. Eng. Perform. 27 (2018) 4740–4748.
- [38] S. Dong, J. Tu, X. Zhang, An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes, Mater. Sci. Eng. A 313 (2001) 83–87.
- [39] K.T. Kim, S.I. Cha, S.H. Hong, Hardness and wear resistance of carbon nanotube reinforced Cu matrix nanocomposites, Mater. Sci. Eng. A 449 (2007) 46–50.
- [40] C. Lin, Z.-C. Chang, Y. Tung, Y.-Y. Ko, Manufacturing and tribological properties of copper matrix/carbon nanotubes composites, Wear 270 (2011) 382–394.
- [41] M.R. Akbarpour, S. Alipour, M. Najafi, Tribological characteristics of self-lubricating nanostructured aluminum reinforced with multi-wall CNTs processed by flake powder metallurgy and hot pressing method, Diamond Relat. Mater. 90 (2018) 93–100.
- [42] M.R. Akbarpour, A. Pouresmaeil, The influence of CNTs on the microstructure and strength of Al-CNT composites produced by flake powder metallurgy and hot pressing method, Diamond Relat. Mater. 88 (2018) 6–11.
- [43] M.R. Akbarpour, S. Alipour, A. Safarzadeh, H.S. Kim, Wear and friction behavior of self-lubricating hybrid Cu–(SiC + x CNT) composites, Compos. B: Eng. 158 (2019) 92–101.
- [44] L. Reinert, S. Suárez, A. Rosenkranz, Tribo-mechanisms of carbon nanotubes: friction and wear behavior of CNT-reinforced nickel matrix composites and CNT-coated bulk nickel, Lubricants 4 (2016) 11.
- [45] M.M. Bastwros, A.M. Esawi, A. Wifi, Friction and wear behavior of Al-CNT composites, Wear 307 (2013) 164–173.
- [46] P. Van Trinh, T.B. Trung, N.B. Thang, B.H. Thang, T.X. Tinh, D. D. Phuong, et al., Calculation of the friction coefficient of Cu matrix composite reinforced by carbon nanotubes, Comput. Mater. Sci. 49 (2010) S239–S241.
- [47] N.S. Shaari, J. Md Said, A. Jumahat, M.H. Ismail, Wear behaviour of copper/carbon nanotubes, Ind. Lubric. Tribol. 69 (2017) 342–347.
- [48] J.M. West, Basic Corrosion and Oxidation, Ellis Horwood, 1992.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c24f26fc-9d60-4320-9aa6-9d590e05aa79