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Summary 
For aircraft structures the failures due to acoustic fatigue are very important, particularly for new 

supersonic or short take-off aircraft. The majority of acoustic fatigue life test methods are based on the 
reproduction of noise acting on the structure – in reverberation chambers or progressive wave tubes. The 
method described in this paper is based on the reproduction of dynamic response of the structure subjected 
to random acoustic loading. 
 
1. INTRODUCTION 
 

The problem of acoustic fatigue of aircraft structures appeared in the early 50’s  of the last 
century as one of the major problems in a jet aircraft. As speed, size and weight of modern aircraft 
have increased so has the significance of this problem. 

Resistance to acoustic fatigue of aircraft structures is one of the main criteria for their 
evaluation. This is evidenced by the aircraft design regulations which treat the acoustic and classic 
structure fatigue issues equally. This means that the random vibrating aircraft structural 
components must be tested in order to determine their fatigue life due to this load. 

In recent years we have seen the growing interest in acoustic fatigue problems. This is due to 
the focus on supersonic aircraft and short take off and landing aircraft. An emphasis is also placed 
on the resistance to vibration of composite structures, with particular attention to: composite - 
composite and composite – metal connections. 

In studying the phenomenon of structure acoustic fatigue, laboratory tests in simulated noise 
conditions play a key role. However, at high acoustic loads and large structures surface area the 
simulating device power needed to achieve a broadband simulation significantly exceeds the 
power of the available equipment. 

It is therefore necessary to develop a test method that does not require to faithfully reproduce 
the acoustic field acting on the structure. This method will rely not on the reconstruction of the 
load acting on the structure (e.g. noise load), but on the reconstruction of the structure dynamic 
response to this load. The essence of the method is to replace the actual broadband non-harmonic 
excitation by polyharmonic excitation, containing main resonance frequencies of the vibrating 
structures. 

The most important issue in the investigations performed with the presented method is 
simulating the actual vibrations in such a way that the actual fatigue effects of the real and 
simulated vibrations are identical at every moment of the test. This is a fundamental requirement 
for application of this method. The development of a criterion by which the selection of structure 
significant free vibrations will be made while the above condition is met, was the main goal of the 
research project, whose realization is described in [9]. 
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Fig. 1. Examples of cracks in the structure of the airplane elevator due to acoustic fatigue. 

 
2. ASSUMPTIONS OF THE RESEARCH METHOD 
 

Aircraft structures consist of many mechanical components such as plates, beams, bolts, rivets, 
etc. These elements have different shapes and are made of different materials. Theoretical 
estimation of acoustic durability of the whole structure is thus very difficult, and in most cases 
even impossible. However, you can resolve this issue, as is the case in the presented method, by 
the full structure laboratory testing, using modern equipment to induce vibrations. 
The basic assumptions of the method being developed are as follows: 
I. to the non-harmonic excitation, the broadband structure responds with its free vibrations with the 

intensity depending on the excitation intensity – as shown by the vibration analysis in the 
frequency domain. 

II. Vibrations of a finite structure can be considered as the sum of a number of its free vibrations, 
each of which is performed with a specific frequency ωr and is referred in the mode Sr (x) 
satisfying the boundary conditions and is possible to excite independently of the others. In 
accordance with the above the summary of vibration amplitudes at the point x can be defined as 
follows [1]: 
 ( , ) ( ) ( )r r

r
t x t S xξ ξ=  (1) 

where ξr is the amplitude of vibration at the reference point of the r-th free vibration mode Sr(x). 
In a situation where the vibrations of one mode dominate significantly over the others, the 

mean square of vibration amplitude is: 

 
2 2 2( ) ( ) ( )r rx t S xξ ξ≅

 
(2) 

If some of free vibration modes are excited to a comparable extent, then: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2

r s r s r r r s r s
r s r r s

x t t S x S x t S x t t S x S xξ ξ ξ ξ ξ ξ
≠

= = +  
 
(3) 

i.e. the mean square amplitude of vibration at the point x is the sum of the average squares of 
the amplitudes resulting from each of the modes separately and the cross-correlation between 
the modes. 

Assuming orthogonality of vibration mode the second component of the sum is equal to 
zero and then: 

 

2 2 2( ) ( ) ( )r r
r
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(4) 
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The elevator with a honeycomb core 
 

In the frequency range 0 - 1000 Hz at the measurement points, 30 resonances were identified, 
out of which 5 major were selected for further analysis. The results of the elevator model vibration 
analysis at selected points of the lower skin for selected resonances are shown in Table 5 
 

Table 5. The results of honeycomb elevator model vibration analysis  
at selected points of the lower skin 

Point No. 
N0 f0d RMS σy PSDd σy 

Hz MPa MPa2/Hz 
1 144,7 166,5 1,92 2,31 
3 159,5 166,5 2,44 2,31 

 
6.2. The analysis of acoustic vibrations 
 

At the next stage of work, for both types of the elevator design, the resonances of importance 
for structure fatigue were selected. This was done as described in p. 5 

Table 6 shows the resonance frequencies selected as the most relevant for the analysis. 
Analyzed were the measurement points at which the strains had the highest values. They are: point 
2 for the classic elevator and the point 3 for the honeycomb elevator (Fig. 9). At the top of the 
table, the dominant resonances were shown. 

 
Table 6. The summary of the results of the acoustic vibrations analysis of both elevator designs 

Classic elevator, point 2 Honeycomb elevator, point 3 
f0 PSD σy  ΔF βn αn f0 PSD σy ΔF βn αn 

Hz MPa2/Hz Hz - Hz MPa2/Hz Hz - 
253,7 683,300 708,531 1 1 166,5 4,9490 3,42970 1 1 

77,2 6,121 1,971 0,00278 0,99772 85,1 0,5500 0,19784 0,057680 0,9703 
183,8 12,895 9,749 0,01376 0,99695 102,9 0,6060 0,27030 0,078810 0,9724 
261,6 121,249 133,131 0,18800 0,99950 817,1 0,0231 0,07740 0,022566 0,1655 

 
As a result of the classic elevator vibrations analysis, it can be assumed that the effect of 

resonances other than the dominant resonance frequency – 253.7 Hz, is negligible and, according 
to the assumptions of the proposed method, the system can be regarded as a single degree-of-free-
dom system. Similarly, in the case of the honeycomb elevator, the analysis showed that the system 
can be treated as a single degree-of-freedom system of the resonance frequency of 166.5 Hz. 
 
6.3. The selection of the narrowband load 
 

The narrowband simulated load conditions designated for the elevator and the resulting 
vibration data received at the analyzed points of skin are given below in Table 7. 
 
 Table 7. Conditions of the elevators simulated load. 

Elevator 

Excitation Structure response 

Frequency range PSD RMS σy PSDd σy N0s 

Hz MPa2/Hz MPa MPa2/Hz Hz 
classical 252,7 – 254,7 450,3 36,44 1185 253,7 
honeycomb 165,5 – 167,5 279,4 2,44 7,08 166,5 
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7. CONCLUSIONS 
 

The acoustic vibrations analysis of the simple fragments of the flat skin has led to the 
conclusion that the vibration response is dominated by only one component, and the impact of the 
others is negligible. 

Similarly, the acoustic vibrations analysis of the complex structure fragments of the jet's 
horizontal empennage, located in the zone of strong acoustic influence of the jet noise, has led to 
the conclusion that vibration response is dominated by only one component, and the impact of the 
others is negligible. This conclusion is confirmed by the vibration measurements of the aircraft 
elevators on Iryda I-22 airplane, as described in work [11]. 

Results obtained in the course of the analytical verification suggest that the proposed test 
method can be applied to acoustic fatigue tests. However, the final answer as to the possibility of 
the use of the method can only be obtained by its experimental verification. 
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