PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fracture behaviour of basalt and steel fibre reinforced concrete

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zamiany parametrów mechaniki pękania betonów zawierających włókna bazaltowe i stalowe
Języki publikacji
EN
Abstrakty
EN
The pre-peak and post-peak softening behaviour of fine grained concrete with steel fibres and basalt fibres were investigated. The load-crack mouth opening displacement and load-deflection relationships, obtained in three-point bending test for specimens with U-notches, were used to analyze the fracture behaviour as well as to calculate the fracture energy. The strength properties of concretes tested were also compared. The modification of fracture plots, recorded under load, indicated the capability of basalt fibres to resist crack propagation. The incorporation of steel fibres caused considerable increase in fracture energy resulting in much more ductile behaviour of concrete in comparison to basalt fibre concrete. The differences in fracture behaviour of both type fibre reinforced concretes were pointed out.
PL
Badano wpływ włókien bazaltowych i stalowych na podkrytyczne i pokrytyczne zachowanie się elementów próbnych z betonu drobnoziarnistego. Wykresy zależności obciążenie-rozwarcie wylotu karbu oraz zależności obciążenieugięcie, uzyskane w warunkach trójpunktowego zginania próbek beleczkowych z karbem typu U, wykorzystano do analizy zmian parametrów mechaniki pękania oraz obliczenia energii pękania. Porównano właściwości wytrzymałościowe badanych betonów. Wykazano, że beton zbrojony włóknami bazaltowymi charakteryzuje się zwiększoną odpornością na inicjację i propagację rys. Wprowadzenie włókien stalowych do betonu spowodowało znaczące zwiększenie energii pękania, a także zmianę charakteru materiału w kierunku bardziej ciągliwego w porównaniu do betonu z dodatkiem włókien bazaltowych. Wskazano istotne różnice charakterystyk pękania betonów z dodatkiem obu rodzajów włókien.
Rocznik
Strony
73--80
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Faculty of Civil and Environmental Engineering, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland
  • Faculty of Civil and Environmental Engineering, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland
Bibliografia
  • ACI 544. IR-96 (1998). State-of-the-art report on fibre reinforced concrete. Manual of concrete practice. Farmington Hills.
  • Bažant Z.P. (2002). Concrete fracture models: testing and practice. Engineering Fracture Mechanics, Vol. 69, 165-205.
  • Bordelon A.C. (2007). Fracture behavior of concrete materials for rigid pavements system. MA Thesis. Graduate College of University of Illinois at Urbana-Champaign, USA.
  • Borhan T.M. (2012). Properties of glass concrete reinforced with short basalt fibre. Materials and Design, Vol. 42, 265-271.
  • Buratti N., Mazzotti C., Savoia M. (2011). Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes. Construction and Building Materials, Vol. 25, 2713-2722.
  • Dias D., Thaumaturgo C. (2005). Fracture toughness of geopolymeric concretes reinforced with basalt fibers. Cement & Concrete Composites, Vol. 27, No. 1, 49-54.
  • Di Lodovico M., Prota A., Manfredi G. (2010). Structural upgrade using basalt fibres for concrete confinement. Journal of Composites for Construction, Vol. 14, No. 5, 541-552.
  • EN 12390-3 (2011). Testing hardened concrete: Compressive strength of test specimens.
  • EN 14651 (2005). Test method for metallic fibered concrete – measuring the flexular tensile strength,.
  • Garas V.Y., Kurtis K.E., Kahn L.F. (2012). Creep of UHPC in tension and compression: effect of thermal treatment. Cement & Concrete Composite,s Vol. 34, No. 4, 493-502.
  • Kalpokaitė Dičkuvienė R., Lukošiūtė I., Brinkienė K., Baltušnikas A., Čėsnienė J. (2013). Applicability of the waste fibres in cement paste. Materials Science (Medžiagotyra), Vol. 19, No. 3, 331-226.
  • Kabay N. (2014). Abrasion resistance and fracture energy of concretes with basalt fiber. Construction and Building Materials, Vol. 50, 95-101.
  • Karihaloo B.L. (2003). Failure of concrete, in: Comprehensive structural integrity, Elsevier Pergamon, UK, 477-548.
  • Kazemi M.T., Fazileh F., Ebrahiminezhad M.A. (2007). Cohesive crack model and fracture energy of steel-fiberreinforced-concrete notched cylindrical specimens. Journal of Materials in Civil Engineering, Vol.19, No. 10, 884-890.
  • Kosior-Kazberuk M. (2013). Variations in fracture energy of concrete subjected to cyclic freezing and thawing. Archives of Civil and Mechanical Engineering, Vol. 13, 254-259.
  • Kosior-Kazberuk M., Krassowska J. (2015). Post-cracking behaviour of basalt fibre reinforced concrete. Proc. of the 6th International Conference on Mechanics and Materials in Design, J.F. Silva Gomes, S.A. Meguid (Eds), P. Delgada, Azores, 26-30 July 2015, 673-682.
  • Köksal F., Şahin Y., Gencel O., Yiğit İ. (2013). Fracture energybased optymisation of steel fibre reinforced concretes. Engineering Fracture Mechanics, Vol. 107, 29-37.
  • Li W., Xu J. (2009). Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading. Material Science Engineering A, Vol. 505 No. 1-2, 178-186.
  • Michels J., Christen R., Waldmann D. (2013). Experimental and numerical investigation on postcracking behavior of steel fiber reinforced concrete. Engineering Fracture Mechanics, Vol. 98, 326-349.
  • Model Code 2010 (2012). Comité Euro-International du Béton fib (CEB-FIP).
  • RILEM Draft Recommendation TC 50-FMC (1985). Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Materials and Structures, Vol. 18, 285-290.
  • RILEM TC 162-TDF (2002). Test and design method for steel fibre reinforced concrete. Bending test. Final recommendation. Materials and Structures, Vol. 35, 579-582.
  • RILEM TC 162-TDF (2003). Test and design method for steel fibre reinforced concrete - design method. Materials and Structures, Vol. 36, 560-567.
  • Shah S.P., Swartz S.E., Ouyang Ch. (1995). Fracture mechanics of concrete: Applications of fracture mechanics to concrete, rock and other quasi-brittle materials. John Wiley & Sons, Inc., New York.
  • Sim J., Park C., Moon D. (2005). Characteristics of basalt fiber as a strengthening material for concrete structures. Composites Part B: Engineering, Vol. 36, 504-512.
  • Sorelli G., Meda A., Plizzarri G.A. (2006). Steel fiber concrete slabs on ground: a structural matter. ACI Structural Journal, Vol. 103, No. 4, 551-558.
  • Soutsos M.N., Le T.T., Lampropoulos A.P. (2012). Flexural performance of fibre reinforced concrete made with steel and synthetic fibres. Construction and Building Materials, Vol. 36, 704-710.
  • Vandewalle L. (2008). Hybrid fibre reinforced concrete, In: Harnessing fibres for concrete construction, R.K. Dhir, M.D. Newlands, M.J. McCarthy, K. Paine (Eds), Proc. of the International Conference, University of Dundee, Scotland, UK, 10 July 2008, 11-22.
  • Voit K., Kirnbauer J. (2014). Tensile characteristics and fracture energy of fiber reinforced and non-reinforced ultra high performance concrete (UHPC). International Journal of Fracture, Vol. 188, 147-157.
  • Yoo D.-Y., Park, J.-J., Kim, S.-W., Yoon, Y.-S. (2013). Early age setting, shrinkage and tensile characteristics of ultra high performance fiber reinforced concrete. Construction and Building Materials, Vol. 41, 427-438.
  • Zhang P., Liu Ch., Li Q., Zhang T. (2013). Effect of polypropylene fiber on fracture properties of cement treated crushed rock. Composites: Part B, Vol. 55, 48-54.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c24d6461-4ca9-4293-822b-77d10b36092a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.