PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some practical problems of communications reliability inenviromental monitoring systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, some issues of building a reliable, distributed measurement system for monitoring of water quality in reservoir Lake Dobczyckie are presented. The system is based on a measurement station that has the shape of a floating buoy which is supposed to be at anchor on the reservoir. Wireless data transmission problems that were encountered during the development of the buoy, modeling a radio link, and measurements of actual signal strength on the reservoir are discussed. A mathematical approach to procedures of early situation assessment was conducted, and specialized procedures were designed for measurement stations of the system. It is also discussed how such computations can improve a qualitative assessment of system performance in terms of real-time messaging.
Rocznik
Strony
337--350
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Warsaw University of Technology, Institute of Theory of Electrical Engineering, Measurement and Information Systems, Koszykowa 75 00-662 Warsaw, Poland
autor
  • Warsaw University of Technology, Institute of Theory of Electrical Engineering, Measurement and Information Systems, Koszykowa 75 00-662 Warsaw, Poland
autor
  • Warsaw University of Technology, Institute of Theory of Electrical Engineering, Measurement and Information Systems, Koszykowa 75 00-662 Warsaw, Poland
  • Military University of Technology , Institute of Electronic Systems, Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] Dziadak B., Makowski Ł., Michalski A. (2011). Environmental monitoring system with instant communication. Przegląd Elektrotechniczny, (4), 243-245.
  • [2] Kotus J., Szczodrak M., Czyżewski A., Kostek B. (2012). Distributed System for Noise Threat Evaluation Based on Psychoacoustic Measurements. Metrology and Measurement Systems, XIX(2), 219-230.
  • [3] Ray S., Venayagamoorthy G.K. (2008). Real-time implementation of a measurement-based adaptive wide-area control system considering communication delays. Generation, Transmission & Distribution, IET, 2(1), 62-70.
  • [4] Ferrari P., Flammini A., Sisinni E. (2011). New Architecture for a Wireless Smart Sensor Based on a Software-Defined Radio”, IEEE Transaction on Instrumentation and Measurement, 60(6), 2133-2141.
  • [5] Derr K., Manic M. (2011). Extended Virtual Spring Mesh (EVSM): The Distributed Self-Organizing Mobile Ad Hoc Network for Area Exploration. IEEE Transactions on Industrial Electronics, 58 (12), 5424-5437.
  • [6] Sardini E., Serpelloni M. (2011). Self-Powered Wireless Sensor for Air Temperature and Velocity Measurements With Energy Harvesting Capability. IEEE Transactions on Instrumentation and Measurement, 60 (5),1838-1844.
  • [7] A.M. Abdelgawad, A.M. Bayoumi, M.A. (2011). Remote Measuring for Sand in Pipelines Using Wireless Sensor Network. IEEE Transactions on Instrumentation and Measurements, 60 (4), 1443-1452.
  • [8] Stefański J., (2012). Radio Link Measurement Methodology for Location Service Application. Metrology and Measurement Systems XIX(2), 333-342.
  • [9] A. Flammini, A., Marioli D., Sisinni E., Taroni A. (2007). Environmental Telemonitoring: A Flexible GSM-DECT-Based Solution. IEEE Transactions on Instrumentation and Measurements, 56 (5), 1688-1693.
  • [10] Lasfer A., Chreide A., Abu Ouda H. (2011). GRPS-based Distributed Home-monitoring Using Internetbased Geographical Information System. IEEE Transactions on Consumer Electronics, 57 (4), 1688-1694.
  • [11] Al-Ali A.R., Zualkernan I., Aloul F. (2010). A Mobile GPRS-Sensors Array for Air Pollution Monitoring. IEEE Sensors Journal, 10 (10), 1666-1671.
  • [12] Dziadak B., Makowski Ł., Michalski A. (2011). Embedding Wireless Water Monitoring System in Internet. Przegląd Elektrotechniczny, (4), 246-248.
  • [13] Dziadak B., Michalski A. (2011). Evaluation of the Hardware for a Mobile Measurement Station. IEEE Transactions on Industrial Electronics, 58 (7), 2627-2635.
  • [14] Atia M.M, Noureldin A., Korenberg M.J. (2011). Dynamic Propagation Modeling for Mobile Users’ Position and Heading Estimation in Wireless Local Area Networks. IEEE Wireless Communications Letters, 1 (2), 101-104.
  • [15] Seker S., Kunter F.C. (2011). Multi-Components Mobile Propagation Model of Park Environment. IEEE Transaction on Magnetics, 47 (5), 1494-1497.
  • [16] Azevedo J.A.R., Santos F.E.S. (2011). An Empirical Propagation Model for Forest Environments at Tree Trunk Level. IEEE Transactions on Antennas and Propagation, 59 (6, part 2), 2357-2367.
  • [17] Saeidi C., Fard A., Hodjatkashani F. (2012). Full Three-Dimensional Radio Wave Propagation Prediction Model. IEEE Transaction on Antennas and Propagation, 60 (5), 2462-2471.
  • [18] Hata H. (1980). Empirical Formula for Propagation Loss in Land Mobile Radio Services. IEEE Transactions on Vehicular Technology, VT-29 (3), 317-325.
  • [19] Makowski Ł., Michalski A. (2012). Measurement systems as foundations for reliable decision support systems. IEEE Instrumentation and Measurement Magazine, 15 (3) 48-52.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c249ac69-8d90-4511-b20a-b38dd6c72501
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.