PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Porównanie kosztów cyklu życia autobusów miejskich z napędami konwencjonalnym i alternatywnymi

Identyfikatory
Warianty tytułu
EN
Life cycle cost assessment of urban buses equipped with conventional and alternative propulsion drive
Języki publikacji
PL
Abstrakty
PL
Autobusy wyposażone w alternatywne źródła energii są coraz częściej spotykane na ulicach polskich miast. Dzięki środkom Unii Europejskiej oraz programom badawczo-rozwojowym prowadzonym przez polski Rząd przedsiębiorstwa zajmujące się komunikacją publiczną mają możliwość powiększania taboru o pojazdy pro-ekologiczne. W związku z tym w ostatnich latach udział autobusów z napędami elektrycznymi, hybrydowymi i wyposażonych w silniki zasilane sprężonym gazem ziemnym (CNG) stale wzrasta. Oprócz czynników środowiskowych istotnym kryterium są także czynniki ekonomiczne. W tym celu przydatnym narzędziem jest oszacowanie kosztu cyklu życia (LCC), który, oprócz kosztów zakupu autobusu, pozwala na uwzględnienie koniecznych wydatków związanych z utrzymaniem, użytkowaniem, wycofaniem z eksploatacji. W artykule przedstawiono również emisję substancji szkodliwych w poszczególnych etapach cyklu życia autobusów miejskich z napędem konwencjonalnym, hybrydowym i autobusu wyposażonego w silnik zasilany CNG.
EN
The number of urban buses equipped with alternative propulsion drives is increasing in Polish public transport companies. The subsidy from European Union funds and governmental programs contribute to increasing number of environmentally friendly means of transport. The life cycle cost (LCC) methodology can provides an understanding of economic aspects of urban bus equipped in different types of propulsion. The LCC analysis deliver the sum of costs related to the acquisition, operation, maintenance and disposal of each bus technology system. The aim of this study is to estimate and compare the life cycle cost of conventional bus, hybrid bus, and CNG powered bus. The paper also provide the total air pollutant emissions through the lifetime of each urban analyzed bus.
Rocznik
Tom
Strony
395--404
Opis fizyczny
Bibliogr. 35 poz., tab., wykr.
Twórcy
autor
  • Politechnika Świętokrzyska, Wydział Mechatroniki i Budowy Maszyn
  • Politechnika Świętokrzyska, Wydział Mechatroniki i Budowy Maszyn
  • Politechnika Świętokrzyska, Wydział Zarządzania i Modelowania Komputerowego
Bibliografia
  • 1. Ally J., Pryor T.: Life cycle costing of diesel, natural gas, hybrid and hydrogen fuel cell bus systems: An Australian case study, Energy Policy 94, 2016, s. 285–294.
  • 2. Ally J., Pryor T., Pigneri A.: The role of hydrogen in Australia's transport energy mix, International Journal of Hydrogen Energy Vol. 40, Iss. 13, 2015, s. 4426-4441.
  • 3. Ally J., Pryor T.: Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems, Journal of Power Sources 170, 2007, s. 401–411.
  • 4. Burchart-Korol D.: Zastosowanie metod oceny środowiskowej na podstawie analizy cyklu życia dla branży motoryzacyjnej, Zeszyty Naukowe Politechniki Śląskiej Seria: Organizacja i Zarządzania, Zeszyt 100, 2017, s. 77-85.
  • 5. Caban J., Droździel P., Seńko J.: Wybrane materiały konstrukcyjne w budowie pojazdów samochodowych, Logistyka, 3/2014, s. 946-953.
  • 6. Chester M.V., Horvath A.: Environmental assessment of passenger transportation should include infrastructure and supply chains, Environmental Research Letters 4, 2009, s. 1-7.
  • 7. Chłopek Z., Lasocki J.: Zastosowanie metody oceny cyklu istnienia do analizy właściwości ekologicznych samochodu, Zeszyty Naukowe Instytutu Pojazdów, Zeszyt 1/92, 2013, s. 57-66.
  • 8. Chłopek, Z. Lasocki, J.: Kompleksowa ocena oddziaływania na środowisko procesu przygotowania paliw bioetanolowych pierwszej i drugiej generacji, Eksploatacja i Niezawodność Vol. 15, no. 1, 2013, s. 44-50.
  • 9. Cockroft, C.J., Owen, A.D.: The economics of hydrogen fuel cell buses, Economic Record Vol. 83, Iss. 263, 2007, s. 359-370.
  • 10. Durango-Cohena P.L., McKenzie E.C.: Trading off costs, environmental impact, and levels of service in the optimal design of transit bus fleets, Transportation Research Procedia 23, 2017, s. 1025–1037.
  • 11. Ercan T., Tatari O.: A hybrid life cycle assessment of public transportation buses with alternative fuel options, The International Journal of Life Cycle Assessment 20, 2015, s. 1213–1231.
  • 12. Finnveden G., Hauschild M.Z., Tomas Ekvall T., Guine J., Heijungs R., Hellweg S., Koehler A., David Pennington D., Suh S.: Recent developments in Life Cycle Assessment, Journal of Environmental Management Vol. 91, Iss. 1, 2009, s. 1-21.
  • 13. García Sáncheza J.A., López Martíneza J.M., Lumbreras, Flores M.J., Holgado M.N, Aguilar Morales H.: Impact of Spanish electricity mix, over the period 2008–2030, on the Life Cycle energy consumption and GHG emissions of Electric, Hybrid Diesel-Electric, Fuel Cell Hybrid and Diesel Bus of the Madrid Transportation System, Energy Conversion and Management Vol. 74, 2013, s. 332-343.
  • 14. Ignaciuk P, Gil L., Wójcik A.: Porównanie kosztów eksploatacji autobusów komunikacji miejskiej zasilanych gazem CNG i olejem napędowym, Autobusy - Technika, Eksploatacja, Systemy Transportowe, 11/2016, s. 67-69.
  • 15. Joachimiak-Lechman K.: Środowiskowa ocena cyklu życia (LCA) i rachunek kosztów cyklu życia (LCC). Aspekty porównawcze, Ekonomia i Środowisko 1 (48), 2014, s. 80-96
  • 16. Lajunen A., Lifecycle costs and charging requirements of electric buses with different charging methods, Journal of Cleaner Production 172, 2018, s. 56-67.
  • 17. Lajunen A., Lipman T.: Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses, Energy Vol. 106, 2016, s. 329-342
  • 18. McKenzie E.C, Durango-Cohena P.L., Environmental life-cycle assessment of transit buses with alternative fuel technology, Transportation Research Part D 17, 2012, s. 39–47.
  • 19. Offer G.J., Howey D., Contestabile M., Clague R., Brandon N.P., Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system, Energy Policy 38, 2010, s. 24–29
  • 20. Onat C. N., Kucukvar M., Tatari O.: Towards Life Cycle Sustainability Assessment of Alternative Vehicle Technologies, Sustainability 6, 2014, s. 9305-9342.
  • 21. Ou X., Zhang X., Chang S.: Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations, Energy Policy Vol. 38, Iss. 1, 2010, s. 406-418.
  • 22. Silva C.M., Gonçalves G.A., Farias T.L., Mendes-Lopes J.M.C.: A tank-to-wheel analysis tool for energy and emissions studies in road vehicles, Science of The Total Environment, Vol. 367, Iss. 1, 2006, s. 441-447.
  • 23. Tong F., Hendrickson B., Biehler A., Jaramillo P., Seki S.: Life cycle ownership cost and environmental externality of alternative fuel options for transit buses, Transportation Research Part D 57, 2017, s. 287–302.
  • 24. Tseng H.-K., Wub J.S., Liu X.: Affordability of electric vehicles for a sustainable transport system: An economic and environment analysis, Energy Policy 61, 2013, s. 441–447.
  • 25. Xu J., Gbologah F.E., Lee D.-Y., Liu H., Rodgers M.O., Guensler R.L.: Assessment of alternative fuel and powertrain transit bus options using real-world operations data: Life-cycle fuel and emissions modeling, Applied Energy 154, 2015, s. 143–159.
  • 26. Zackrisson M., Avellán L., Orlenius J.: Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles – Critical issues, Journal of Cleaner Production Vol.18, Iss. 15, 2010, s. 1519-1529.
  • 27. Dyrektywa Parlamentu Europejskiego i Rady 2009/33/WE z dnia 23 kwietnia 2009 r. w sprawie promowania ekologicznie czystych i energooszczędnych pojazdów transportu drogowego
  • 28. Koszt budowy stacji CNG, http://cng-lng.pl/motoryzacja/koszty-eksploatacji/Koszt-budowy-stacji-CNG,artykul,5501.html
  • 29. https://www.e-petrol.pl
  • 30. https://cng.auto.pl/cena-cng-w-polsce/
  • 31. https://www.greencarreports.com/news/1114245_lithium-ion-battery-packs-now-209-per-kwh-will-fallto-100-by-2025-bloomberg-analysis
  • 32. https://www.greencarreports.com/news/1114245_lithium-ion-battery-packs-now-209-per-kwh-will-fallto-100-by-2025-bloomberg-analysis
  • 33. http://silesiainfotransport.pl/blog/2016/10/26/najnowoczesniejsza-w-polsce-stacja-cng/
  • 34. http://infobus.pl/mpk-czestochowa-z-nowa-stacja-cng-najnowoczesniejsza-w-polsce-_more_88646.html
  • 35. greet.es.anl.gov
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2440b86-a16e-4803-85d0-f2c4e545369a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.