Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A phenomenon of reflction of plane waves from a thermally insulated surface of a solid half-space is studied in context of Lord-Shulman theory of generalized thermo-viscoelasticity with voids. The governing equations of generalized thermo-viscoelastic medium with voids are specialized in x-z plane. The plane wave solution of these equations shows the existence of three coupled longitudinal waves and a shear vertical wave in a generalized thermo-viscoelastic medium with voids. For incident plane wave (longitudinal or shear), three coupled longitudinal waves and a shear vertical wave reflect back in the medium. The mechanical boundary conditions at free surface of solid half-space are considered as impedance boundary conditions, in which the shear force tractions are assumed to vary linearly with the tangential displacement components multiplied by the frequency. The impedance corresponds to the constant of proportionality. The appropriate potentials of incident and reflected waves in the half-space will satisfy the required impedance boundary conditions. A non-homogeneous system of four equations in the amplitude ratios of reflected waves is obtained. These amplitude ratios are functions of material parameters, impedance parameter, angle of incidence, thermal relaxation and speeds of plane waves. Using relevant material parameters for medium, the amplitude ratios are computed numerically and plotted against certain ranges of impedance parameter and the angle of incidence.
Czasopismo
Rocznik
Tom
Strony
1483--1496
Opis fizyczny
Bibliogr. 30 poz., wykr.
Twórcy
autor
- Department of Mathematics, Post Graduate Government College, Sector-11, Chandigarh - 160 011, India
Bibliografia
- [1] Cowin, S. C., Nunziato, J. W.: Linear theory of elastic materials with voids, J. Elastic, 13, 125-147, 1983.
- [2] Iesan, D.: A theory of thermoelastic materials with voids, Acta Mech., 60, 67-89, 1986.
- [3] Iesan, D.: Thermoelastic Models of Cortinua, Kluwer Academic Publishers, Boston, Dordrecht, London, 2004.
- [4] Iesan, D.: Some theorems in the theory of elastic materials with voids, J. Elasticity, 15, 215-224, 1985.
- [5] Ciarletta, S., Scalia, A.: On uniqueness and reciprocity in linear thermoelasticity of materials with voids, J. Elasticity, 32 1-17, 1993.
- [6] Ciarletta, S., Scalia, A.: On the spatial and temporal behaviour in linear thermoelasticity of materials with voids, J. Therm. Stresses, 24, 433-455, 2001.
- [7] Ciarletta, S., Ciarletta, M., Tibullo, V.: Rayleigh surface waves on a Kelvin-Voigt viscoelastic half-space, J. Elasticity, 115, 61-76, 2014.
- [8] Iesan, D., Nappa, L.: Thermal stresses in plane strain of porous elastic bodies, Meccanica, 39, 125-138, 2004.
- [9] Chirita, S., D'Apice, C.: On Saint-Venant's principle for a linear poroelastic material in plane strain, J. Math. Anal. Appl., 363, 454-467, 2010.
- [10] Chirita, S., D'Apice, C.: On Saint-Venant's principle in a poroelastic arch-like region, Math. Methods Appl. Sci., 33, 1743-1754, 2010.
- [11] Ciarletta, M., Passarella, F., Svanadze, M.: Planes waves and uniqueness theorems in the coupled linear theory of elasticity for solids with double porosity, J. Elasticity, 114, 55-68, 2014.
- [12] Puri, P., Cowin, S. C.: Plane waves in linear elastic materials with voids, J. Elasticity, 15, 167-183, 1985.
- [13] Chandrasekharaiah, D. S.: Surface waves in an elastic half-space with voids, Acta Mech., 62, 77-85, 1986.
- [14] Chandrasekharaiah, D. S.: Rayleigh Lamb waves in an elastic plate with voids, J. Appl. Mech., 54, 509-512, 1987.
- [15] Singh, B.: Wave propagation in a generalized thermoelastic material with voids, Appl. Math. Comp., 189, 698-709, 2007.
- [16] Ciarletta, M., Straughan, B.: Thermo-poroacoustic acceleration waves in elastic materials with voids, J. Math. Anal. Appl., 333, 142-150, 2007.
- [17] Ciarletta, M., Svanadze, M., Buonanno, L.: Plane waves and vibrations in the theory of micropolar thermoelasticity for materials with voids, Eur. J. Mech., A solid, 28, 897-903, 2009.
- [18] Bucur, A. V., Passarella, F., Tibullo, V.: Rayleigh surface waves in the theory of thermoelastic materials with voids, Meccanica, 49, 2069-2078, 2014.
- [19] Iesan, D.: On a theory of thermoviscoelastic materials with voids, J. Elastic, 104, 369-384, 2011.
- [20] Iesan, D. On the Nonlinear Theory of Thermoviscoelastic Materials with Voids, J. Elast., 128, 1-16, 2017.
- [21] Sharma, K., Kumar, P.: Propagation of plane waves and fundamental solution in thermoviscoelastic medium with voids, J. Therm. Stresses, 36, 94-111, 2013.
- [22] Svanadze, M. M.: Potential method in the linear theory of viscoelastic materials with voids, J. Elasticity, 114, 101-126, 2014.
- [23] Tomar, S. K., Bhagwan, J., Steeb, H.: Time harmonic waves in a thermoviscoelastic materials with voids, J. Vib. Control, 20, 1119-1136, 2014.
- [24] Chirita, S.: On the spatial behaviour of the steady-state vibrations in thermoviscoelastic porous materials, J. Therm. Stresses, 38, 96-109, 2015.
- [25] Chirita, S., Danescu, A.: Surface waves problem in a thermoviscoelastic porous half-space, Wave Motion, 54, 100-114, 2015.
- [26] D'Apice, C., Chirita, S.: Plane harmonic waves in the theory of thermoviscoelastic materials with voids, J. Therm. Stresses, 39, http://dx.doi.org/10.1080/01495739.2015.1123972, 2016.
- [27] Bucur, A.: Rayleigh surface waves problem in linear thermoviscoelasticity with voids, Acta Mechanica, 227, 1199-1212, 2016.
- [28] Lakes, R. S.: Viscoelastic Materials, Cambridge University Press, Cambridge, 2009.
- [29] Godoy, E., Durn, M., Ndlec, J.-C.: On the existence of the surface waves in an elastic half-space with impedance boundary conditions, Wave Motion, 49, 585-594, 2012.
- [30] Lord, H., Shulman, Y.: A generalised dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15, 299-309, 1967.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c242c767-564d-4458-9e54-9aba700152ab