Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Foamed glass granulated-based self-compacting mortars: open-porosity effect on rheological and mechanical properties
Języki publikacji
Abstrakty
Piankę szklaną stosuje się ostatnio, jako kruszywo do produkcji lekkich betonów. Lekkość betonu jest spowodowana znaczną porowatością granulowanej pianki szklanej, która ma zamknięte pory i gładkie powierzchnie. W związku z tym w tej pracy zastosowano granulowaną piankę szklaną (GPS) z otwartą porowatością, do uzyskania lekkich, samozagęszczających się zapraw. GPS otrzymano z proszku szklanego – stłuczki szklanej i „pieniącego się” dodatku, którym był wapień. W związku z tym zastosowano prażenie w 850°C, w ciągu 20 minut. Następnie otrzymano piasek, stosując kruszenie i przesiewanie przez sito 5 mm. Z kolei przygotowano samozagęszczające się zaprawy, z drobnym kruszywem w formie piasku i inne zaprawy z granulowaną pianką szklaną, zastępując nią piasek, w stosunku objętościowym 30%, 50% i 100%. Następnie zbadano właściwości reologiczne – płynność i fizyko-mechaniczne zapraw, a mianowicie gęstość i porowatość, w oparciu o absorpcję wody. Badanie strefy przejściowej – matryca cementowa / granule GPS wykazało, że otwarta porowatość GPS – piasek, sprzyjała adhezji z matrycą cementową, bez segregacji faz cementowych. Natomiast stwierdzono zmniejszenie wytrzymałości na ściskanie zapraw, o szczególnej lekkości. Należy podkreślić, że ta ostatnia właściwość ma w budownictwie duże znaczenie.
The foamed glass is currently used in the manufacture of concretes as aggregate to produce lightweight concrete. The lightness of the concrete is assured by the important porosity of foamed glass granulates [GFG], however, they have a closed porosity with a smooth surface. In this respect, this study aims to use foam glass granulates with open-porosity, to produce lightweight self-compacting mortars. GFG were prepared from the glass powder - glass cullet and foaming agent – limestone, according to the current applied process for GFG – heat treatment at 850°C for 20 min. Then from GFG the sand fine aggregate – 0/5 mm was prepared by crushing and sieving. The self-compacting mortars were obtained using natural sand as fine aggregate and other mortars with granulated foam glass substituting sand at volume ratios: 30, 50 and 100 %. Rheological tests of fluidity and physical properties, i.e. density and porosity, by measuring absorption of water and mechanical tests were carried out on studied mortars. The interface of cementitious matrix/GFG granules study shows that open-porosity of GFG sand has favored adhesion to cement matrix, without causing the segregation of the mortar phases. Also, the decrease of the compressive strength for mortars exhibiting a specific lightness, was found. It should be noted that the latter property is very important in construction.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
242--252
Opis fizyczny
Bibligr. 28 poz., il., tab.
Twórcy
autor
- Mechanical Engineering Department, Faculty of Technology, M’hamed Bougara University of Boumerdes, Algeria
autor
- Mechanical Engineering Department, Faculty of Technology, M’hamed Bougara University of Boumerdes, Algeria
autor
- Civil Engineering Department, Faculty of Construction Engineering, Mouloud Mammerie University of Tizi Ouzou, Algeria
autor
- Research Unit: Materials, Process and Environment, Faculty of Technology, M’hamed Bougara University of Boumerdes, Algeria
Bibliografia
- 1. Ö. Andiç-Çakır, S. Hızal, Influence of elevated temperatures on the mechanical properties and microstructure of self-consolidating lightweight aggregate concrete. Constr. Build. Mater. 34, 575-583 (2012).
- 2. A. Ayadi, N. Stiti, K. Boumchedda, H. Rennai, Y. Lerari, Elaboration and characterization of porous granules based on waste glass. Powder Techn. 208, 423-426 (2011).
- 3. F.A. Barrios Illidge, Acoustic emission techniques and cyclic load testing for integrity evaluation of self-compacting normal and self- Compacting. Ph.D thesis, DAI-B71/05, 2010.
- 4. B. Vakhshouri, S. Nejadi, Mix design of light-weight self-compacting concrete. Case Stud. Constr. Mater. 4,:1-14 (2016).
- 5. F. Benhaoua, Study and Influence of the alkali silicate glass addition on the porosity of the foam glass prepared based on cullet. thesis of magister, M’hamed Bougara University of Boumerdes, 2012.
- 6. E. Bernardo, R. Cedro, M. Florean, S. Hreglich, Reutilization and stabilization of wastes by the production of glass foams. Ceram. Int. 33, 963-968 (2007).
- 7. M. Bravo, J. Brito, J. Pontes, L. Evangelista, Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants. J. Clean. Prod. 99, 59-74 (2015).
- 8. B. L. Anh Tuan, C.-L. Hwang, K.-L. Lin, Y.-Y. Chen, M.-P. Young, Development of lightweight aggregate from sewage sludge and waste glass powder for concrete. Constr. Build. Mater. 47, 334-339 (2013).
- 9. G. Bumanis, D. Bajare, A. Korjakins., Mechanical and Thermal Properties of Lightweight Concrete Made from Expanded Glass. J. Sustain. Arch. Civil Eng. 2, 26-32 (2013).
- 10. G. Bumanis, D. Bajare, J. Locs, A. Korjakins, Alkali-silica reactivity of foam glass granules in structure of lightweight concrete. Constr. Build. Mater. 47, 274-281 (2013).
- 11. R.K. Dhir, M.D. Newlands, A. McCarthy, Use of Foamed concrete in construction. Thomas Telford Publishing, Thomas Telford Ltd, London, 2005.
- 12. H. Gôdeke, H. Fucks, REAPOR -Sintered open-pore glass foam as ahigh strength sound absorder. Glasstech, Ber. Glass Sci. Technol. 71(9): 282-284 (1998).
- 13. J. König, R.R. Petersen, Y. Yue, Fabrication of highly insulating foam glass made from CRT panel glass. Ceram. Int. 41(8), 9793-9800 (2015).
- 14. S. Juradin, G. Baloevi’c, A. Harapin, Experimental testing of the effects of fine particles on the properties of the self-compacting lightweight concrete. Adv. Mater. Sci. Eng. 8, 398567 (2012).
- 15. J.M. Khatib, S. Shariff, E.M. Negim, Effect of Incorporating Foamed Glass on the Flexural Behaviour of Reinforced Concrete Beams. World Appl. Sci. J. 19, 47-51 (2012).
- 16. M. Limbachiy, A.S. Meddah, S. Fotiadou, Performance of granulated foam glass concrete. Constr. Build. Mater. 28, 759-768 (2012).
- 17. M.I. Norlia, S. Shamshinar, C.A. Roshazita, L.R. Nur, N.T. Tengku, Performance of Lightweight Foamed Concrete with Waste Clay Brick as Coarse Aggregate. APCBEE Proc. 5, 497 - 501 (2013).
- 18. B. Safi , M. Saidi, D. Aboutaleb, M. Maallem, The use of plastic waste as fine aggregate in the self-compacting mortars: Effect on physical and mechanical properties. Const. Build. Mater. 43, 436-442 (2013).
- 19. A. Schwartzentruber, C. Catherine, Method of the concrete equivalent mortar (CEM) - A new tool to design concrete containing admixture. Mater. Struct. 33, 475-482 (2000).
- 20. O. Vieli, Foam glass granules for lightweight concrete. European Patent 10,069 A, June 1982.
- 21. K.H. Yang, K.H. Lee, J.K. Song, M.H. Gong, Properties and sustainability of alkali-activated slag foamed concrete. J. Clean. Prod. 68, 226-233 (2014).
- 22. R. Yu, D.V. Van Onna, P. Spiesz, Q.L. Yu, H.J.H. Brouwers, Development of Ultra-Lightweight Fibre Reinforced Concrete applying expanded waste glass. J. Clean. Prod. 112, 690-701 (2016).
- 23. Q.L. Yu, P. Spiesz, H.J.H. Brouwers, Design of ultra-lightweight concrete: towards monolithic concrete structure. Vestn. MGSU 4, 98-106 (2014).
- 24. Q.L. Yu, P. Spiesz, H.J.H. Brouwers, Ultra-lightweight concrete: conceptual design and performance evaluation. Cem. Concr. Comp. 61, 18-28 (2015).
- 1. ASTM C348 - 08, Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars, which appears in the Annual Book of ASTM Standards Vol 04.01
- 2. ASTM C349 - 08, Standard Test Method for Compressive Strength of Hydraulic-Cement Mortars (Using Portions of Prisms Broken in Flexure), which appears in the Annual Book of ASTM Standards Vol 04.01
- 3. ASTM C597-97; Standard Test Method for Pulse Velocity through Concrete, Annual Book of ASTM Standards, 04.02 Concrete and Concrete Aggregate; 1993
- 4. ASTM C642; Standard test method for specific gravity, absorption, and voids in hardened concrete, Annual Book of ASTM Standards, 04.02 Concrete and Concrete Aggregate; 1993.
Uwagi
Bibliografia podzielona na literaturę i normy.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c23e6938-47e7-40f6-beb4-63ad2d14705b