PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Properties of the least action level and the existence of ground state solution to fractional elliptic equation with harmonic potential

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article we consider the following fractional semilinear elliptic equation [formula]. By using variational methods we show the existence of a symmetric decreasing ground state solution of this equation. Moreover, we study some continuity and differentiability properties of the ground state level. Finally, we consider a bifurcation type result.
Rocznik
Strony
749--765
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
  • FCA Research Group, Departamento de Matemáticas, Instituto de Investigación en Matemáticas, Faculta de Ciencias Físicas y Matemáticas, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n. Trujillo-Perú
  • FCA Research Group, Departamento de Matemáticas, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n. Trujillo-Perú
  • FCA Research Group, Departamento de Matemáticas, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n. Trujillo-Perú
  • FCA Research Group, Departamento de Matemáticas, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n. Trujillo-Perú
Bibliografia
  • [1] C. Alves, C. Torres Ledesma, Existence and concentration of solution for a non local regional Schrödinger equation with competing potentials, Glasg. Math. J. 61 (2019), no. 2, 441–460.
  • [2] F. Almgren, E. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc. 2 (1989), 683–773.
  • [3] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), no. 4, 349–381.
  • [4] X. Chang, Ground state solutions of asymptotically linear fractional Schrödinger equation, J. Math. Phys. 54 (2013), no. 6, 061504.
  • [5] M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential, J. Math. Phys. 53 (2012), no. 4, 043507.
  • [6] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573.
  • [7] Z. Ding, H. Hajaiej, On a fractional Schrödinger equation in the presence of harmonic potential, Electron. Res. Arch. 29 (2021), no. 5, 3449–3469.
  • [8] S. Dovetta, E. Serra, P. Tilli, Action versus energy ground states in nonlinear Schrödinger equations, Math. Ann. 385 (2023), 1545–1576.
  • [9] P. Felmer, C. Torres Ledesma, Non-linear Schrödinger equation with non-local regional diffusion, Calc. Var. Partial Differential Equations 54 (2015), no. 1, 75–98.
  • [10] G. Fibich, X.-P. Wang, Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Phys. D 175 (2003), no. 1–2, 96–108.
  • [11] T. Gou, Uniqueness of ground states for fractional nonlinear elliptic problem with harmonic potential, arXiv:2208.12068v2, (2022).
  • [12] H. Hajaiej, L. Song, Comment on the uniqueness of the ground state solutions of a fractional NLS with a harmonic potential, arXiv:2209.05389v1, (2022).
  • [13] H. Hajaiej, P. Markowich, S. Trabelsi, Minimizers of a class of constrained vectorial variational problems: Part I, Milan J. Math. 82 (2014), no. 1, 81–98.
  • [14] L. Jeanjean, Some continuation properties via minimax arguments, Electron. J. Differential Equations 2011 (2011), Article no. 48.
  • [15] S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in RN, J. Math. Phys. 54 (2013), no. 3, 031501.
  • [16] L. Song, Properties of the least action level, bifurcation phenomena and the existence of normalized solutions for a family of semi-linear elliptic equations without the hypothesis of autonomy, J. Differential Equations 315 (2022), 179–199.
  • [17] C. Torres Ledesma, Existence and symmetry result for fractional p-Laplacian in Rn, Commun. Pure Appl. Anal. 16 (2017), no. 1, 99–113.
  • [18] X. Wang, B. Zeng, On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions, SIAM J. Math. Anal. 28 (1997), no. 3, 633–655.
  • [19] J. Zhang, X. Bao, J. Zhang, Existence and concentration of solutions to Kirchhoff-type equations in R2 with steep potential well vanishing at infinity and exponential critical nonlinearities, Adv. Nonlinear Anal. 12 (2023), no. 1, 20220317.
  • [20] W. Zhang, S. Yuan, L. Wen, Existence and concentration of ground-states for fractional Choquard equation with indefinite potential, Adv. Nonlinear Anal. 11 (2022), no. 1, 1552–1578.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c23dc7a1-56b7-4d6f-9ee6-0997b077bc86
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.