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Abstract. In this article we consider the following fractional semilinear elliptic
equation

(−∆)su+ |x|2u = ωu+ |u|2σu in RN ,

where s ∈ (0, 1), N > 2s, σ ∈ (0, 2s
N−2s ) and ω ∈ (0, λ1). By using variational methods

we show the existence of a symmetric decreasing ground state solution of this equation.
Moreover, we study some continuity and differentiability properties of the ground state
level. Finally, we consider a bifurcation type result.
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1. INTRODUCTION

In this article we consider the following fractional semilinear elliptic equation

(−∆)su+ |x|2u = ωu+ |u|2σu in RN , (1.1)

where N > 2s, s ∈ (0, 1), σ ∈ (0, 2s
N−2s ), ω ∈ (0, λ1).

The fractional Laplacian is characterized as

F((−∆)su(ξ)) = |ξ|sû(ξ),

where F(u) := û is the Fourier transform of u and for functions u smooth enough,
it can be defined by the principal value of the singular integral

(−∆)su(x) = CN,s P.V.

∫

RN

u(x) − u(y)
|x− y|N+2s

dy.
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The problem under consideration arises in the study of standing waves to the following
time-dependent fractional Schrödinger equation,

i
∂ψ

∂t
= (−∆)2ψ + |x|2ψ − |ψ|2σψ, (1.2)

where a standing wave solution to (1.2) has the following form

ψ(t, x) = e−iωtu(x), ω ∈ R.

This kind of solution reduces (1.1) to the following semi-linear fractional elliptic
equation

(−∆)su(x) + |x|2u(x) − |u(x)|2σu(x) = ωu(x) in RN . (1.3)

Recently great attention has to paid to the existence of standing wave solutions to
equation (1.3). For example, Ding and Hajaiej [7] considered the existence of ground
state solutions of equation (1.2). Moreover, they considered the orbital stability of
standing waves and provided an interesting numerical result about the dynamics.
Guo [11] and Hajaiej and Song [12] have discussed the uniqueness result of the
ground state solution of (1.3). To other related results we refer to the readers to
[4, 5, 9, 10, 13, 17, 19, 20] and the reference therein.

Motivated by these previous results this paper deal with the existence of ground
state solution of problem (1.1). Moreover we study some continuity and differentiability
properties of the ground state level. Finally we consider a bifurcation type result.

2. PRELIMINARIES AND EXISTENCE RESULT

We shall work in the Hilbert space

Hs(RN ) :=



u ∈ L2(RN ) :

∫

RN

∫

RN

|u(x) − u(y)|2
|x− y|N+2s

dydx < ∞



 ,

endowed with the norm

∥u∥ =



∫

RN

∫

RN

|u(x) − u(y)|2
|x− y|N+2s

dydx+
∫

RN

|u(x)|2dx




1/2

. (2.1)

Note that, if 0 < s < 1 be such that 2s < N , then there exists a constant C2∗
s

= C(N, s),
such that

∥u∥L2∗
s (RN ) ≤ C2∗

s
∥u∥ (2.2)

for every u ∈ Hs(RN ), where 2∗
s = 2N

N−2s is the fractional critical exponent. Moreover,
the embedding Hs(RN ) ⊂ Lp(RN ) is continuous for any p ∈ [2, 2∗

s] and is locally
compact whenever p ∈ [2, 2∗

s) (for more details see [6]).
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Moreover, we introduce the following fractional Sobolev spaces

Xs =



u ∈ Hs(RN ) :

∫

RN

|x|2|u(x)|2dx < ∞



 ,

endowed with the norm

∥u∥s =



∫

RN

|x|2|u(x)|2dx+
∫

RN

∫

RN

|u(x) − u(y)|
|x− y|n+2s

dydx




1/2

. (2.3)

Considering this space we have the following embedding.

Lemma 2.1. The embedding Xs ↪→ Hs(RN ) is continuous.

Proof. Let b > 0 such that the set Λ = {x ∈ RN : |x|2 < b} has finite measure and

meas(Λ)
2∗

s −2
2∗

s <
1
C2

2∗
s

,

where C2∗
s

is given by (2.2). Then

∫

RN

|u(x)|2dx ≤



∫

RN

|u(x)|2∗
sdx




2
2∗

s

meas(Λ)
2∗

s −2
2∗

s + 1
b

∫

RN

|x|2|u(x)|2dx

≤ C2
2∗

s



∫

RN

|u(x)|2dx+
∫

RN

∫

RN

|u(x) − u(z)|2
|x− z|N+2s

dzdx


meas(Λ)

2∗
s −2
2∗

s

+ 1
b

∫

RN

|x|2|u(x)|2dx.

This implies that
∫

RN

|u(x)|2dx

≤
max{C2

2∗
s
meas(Λ)

2∗
s −2
2∗

s , 1
b }

1 − C2
2∗

s
meas(Λ)

2∗
s −2
2∗

s



∫

RN

∫

RN

|u(x) − u(z)|2
|x− z|N+2s

dzdx+
∫

RN

|x|2|u(x)|2dx




Let

Θ =
1 − C2

2∗
s
meas(Λ)

2∗
s −2
2∗

s

C2
2∗

s
meas(Λ)

2∗
s −2
2∗

s

.
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This shows that
∥u∥2 ≤

(
1 + 1

Θ

)
∥u∥2

s,

which yields that the embedding Xs ↪→ Hs(RN ) is continuous.

Remark 2.2.
1. Since the embedding Hs(RN ) ⊂ Lp(RN ) is continuous for any p ∈ [2, 2∗

s] and
is locally compact whenever p ∈ [2, 2∗

s), then by Lemma 2.1, Xs ⊂ Lp(RN )
continuously for p ∈ [2, 2∗

s] and locally compact for p ∈ [2, 2∗
s).

2. Since the external potential V (x) = |x|2 is coercive, we can show that the embedding
Xs ⊂ Lp(RN ) is compact for p ∈ [2, 2∗

s).
Associated to problem (1.1), we have the functional Iω : Xs → R defined as

Iω(u) = 1
2



∫

RN

∫

RN

|u(x) − u(z)|2
|x− z|N+2s

dzdx+
∫

RN

|x|2u2(x)dx


− ω

2

∫

RN

u2(x)dx

− 1
2σ + 2

∫

RN

|u(x)|2σ+2dx.

(2.4)

Standard arguments prove that Iω ∈ C1(Xs,R) and for all u, v ∈ Xs we have

I ′
ω(u)v =

∫

RN

∫

RN

[u(x) − u(z)][v(x) − v(z)]
|x− z|N+2s

dzdx+
∫

RN

|x|2u(x)v(x)dx

− ω

∫

RN

u(x)v(x)dx−
∫

RN

|u(x)|2σu(x)v(x)dx.
(2.5)

Hence, the critical points of Iω are weak solutions of problem (1.1).
Let λ1 defined as

λ1 = inf
u∈Xs\{0}

∫
RN

∫
RN

|u(x)−u(z)|2

|x−z|N+2s dzdx+
∫
RN |x|2u2(x)dx

∫
RN u2(x)dx ,

which is the simple first eigenvalue of the following linear problem

(−∆)su+ |x|2u = λu, x ∈ RN .

Therefore,
λ1∥u∥2

L2(RN ) ≤ ∥u∥2
s. (2.6)

Then, we have the following lemma.
Lemma 2.3. If ω < λ1, the functional Iω satisfies the Palais–Smale condition at any
level c ∈ R, namely, any sequence (un) ⊂ Xs such that

Iω(un) → c and I ′
ω(un) → 0 as n → ∞ (2.7)

has a converging subsequence.
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Proof. Let (un)n∈N ⊂ Xs be a sequence verifying (2.7). Hence, for n large enough
we have

1
2∥un∥2

s − ω

2 ∥un∥2
L2(RN ) − 1

2σ + 2∥un∥2σ+2
L2σ+2(RN ) = c+ on(1) (2.8)

and
∥un∥2

s − ω∥un∥2
L2(RN ) − ∥un∥2σ+2

L2σ+2(RN ) = on(1)∥un∥s. (2.9)

Multiplying (2.9) by − 1
2σ+2 and adding to (2.8) we have

(
1
2 − 1

2σ + 2

)
∥un∥2

s − ω

(
1
2 − 1

2σ + 2

)
∥un∥2

L2(RN ) = c+ on(1) − o(1)
2σ + 2∥un∥s.

Hence, (
1
2 − 1

2σ + 2

)(
1 − ω

λ1

)
∥un∥2

s ≤ c+ on(1) − on(1)
2σ + 2∥un∥s.

Together with ω < λ1, we know that (un)n∈N is bounded in Xs. Consequently, up to
a subsequence, un ⇀ u in Xs and by Remark 2.2(2),

un → u in L2(RN ) and in L2σ+2(RN ).

Therefore, by using the following equality

⟨I ′
ω(un) − I ′

ω(u), un − u⟩+on(1) = ∥un − u∥2
s − ω∥un − u∥2

L2(RN ) − ∥un − u∥2σ+2
L2σ+2(RN ),

we conclude that un → u in Xs.

Theorem 2.4. Suppose that ω < λ1. Then, problem (1.1) has at least one radially
symmetric ground state solution.

Proof. We divide the proof into three parts. In the first step we use the mountain
pass theorem to study the existence of a weak solution. In the second step by using
Nehari’s manifold we show that this solution is a ground state solution. Finally, by
using symmetry rearrangement we show that this solution is radially symmetric.
Step 1. Clearly, Iω(0) = 0, and, by Lemma 2.3, Iω verifies the Palais–Smale condition.
Now, we claim that Iω satisfies the geometry mountain pass condition. First, we note
that there exists ω0 > 0 such that for any u ∈ Xs we have

∥u∥2
s − ω∥u∥2

L2(RN ) ≥ ω0∥u∥2
s. (2.10)

If not, since ω < λ1, for any ω̃ ≤ 0, there is u0 ∈ Xs such that

0 <
(

1 − ω

λ1

)
∥u0∥2

s ≤ ∥u0∥2
s − ω∥u0∥2

L2(RN ) ≤ w̃∥u0∥2
s ≤ 0,

which is a contradiction. Therefore, (2.10) holds true. Remark 2.2 and (2.10) yield
that

Iω(u) ≥ w0
2 ∥u∥2

s − C2σ+2
2σ+2

2σ + 2∥u∥2σ+2
s .
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Therefore, there are ρ > 0 and α > 0 such that, for any u ∈ Xs with ∥u∥s = ρ,

Iω(u) ≥ α.

On the other hand, let φ ∈ C∞
0 (Rn) such that ∥φ∥s = 1, then

Iω(tφ)
t2

= 1
2 − ω

2

∫

supp(φ)

φ2(x)dx− t2σ

2σ + 2

∫

supp(φ)

|φ(x)|2σ+2dx,

which implies that Iω(t0φ) < 0 for t0 large enough. Therefore, by applying the
mountain pass theorem [3], there exists ũ ∈ Xs such that

Iω(ũ) = c and I ′
ω(ũ) = 0,

where
c = inf

γ∈Γω

sup
t∈[0,1]

Iω(γ(t))

and
Γω = {γ ∈ C([0, 1], Xs) : γ(0) = 0, Iω(γ(1)) < 0}.

Step 2. We claim that ũ is a ground state solution. In fact, let

Nω = {u ∈ Xs \ {0} : I ′
ω(u)u = 0}.

Note that Nω ̸= ∅, since ũ ∈ Nω. Furthermore, Iω is bounded from below on Nω and
there exists Λ > 0 such that

Iω(u) > Λ for every u ∈ Nω.

Hence, there exists c̃ > 0 such that

c̃ = inf
u∈Nω

Iω(u).

Clearly c̃ ≤ c. Let wn ⊂ Nω be a minimizing sequence for c̃, so (wn)n∈N is
a (PS)-sequence. As in the proof of Lemma 2.3, (wn)n∈N is bounded in Xs and
up to a subsequence wn → w in Xs. Furthermore, we can show that

I ′
ω(wn)φ → I ′

ω(w)φ, ∀φ ∈ C∞
0 (RN ), (2.11)

and, since wn is a (PS)-sequence, we obtain

I ′
ω(w)φ = 0, ∀φ ∈ C∞

0 (RN ).

Therefore w is a nontrivial weak solution of (1.1). Since w ∈ Nω, we know that

I ′
ω(w)w− = −∥w−∥2

s = 0,

where w− = max{−w, 0}. Therefore, w is a ground state solution, that is,
a non-negative solution with lowest energy and by [11, Theorem 1.1], ũ = w.
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Step 3. ũ is radially symmetric. Setting a minimizing sequence (un)n∈N ⊂ Xs such
that

Iω(un) → c̃ = inf
u∈Nω

Iω(u).

Let vn = (un)∗ the symmetric rearrangement of un. Since symmetric rearrangements
are continuous in Xs (see [2]), then vn ∈ Xs. Moreover, it is well known that

∫

RN

|u|2σ+2dx =
∫

RN

|u∗|2σ+2dx,

∫

RN

|u|2dx =
∫

RN

|u∗|2dx (2.12)

and ∫

RN

∫

RN

|u∗(x) − u∗(y)|2
|x− y|N+2s

dydx ≤
∫

RN

∫

RN

|u(x) − u(y)|2
|x− y|N+2s

dydx,

∫

RN

|x|2|u∗|2dx ≤
∫

RN

|x|2|u|2dx.
(2.13)

Therefore, for n large enough, we get

c̃ ≤ Iω(vn) ≤ Iω(un) ≤ c̃+ 1
n
, (2.14)

and by Ekeland’s variational principle there is a sequence (zn)n∈N ⊂ Xs such that

Iω(zn) → c̃, I ′
ω(zn) → 0 and ∥zn − vn∥s → 0.

Consequently, by the continuity of symmetric rearrangement and Lemma 2.3, there
exists z ∈ Xs such that zn → z in Xs, Iω(z) = c̃, I ′

ω(z) = 0 and

lim
n→∞

∥z − vn∥s = 0.

The last equality shows that z = ũ.

3. PROPERTIES OF THE LEAST ACTION LEVEL

By the previous section, the energy levels

C̃(ω) = inf
u∈Nω

Iω(u) and C(ω) = inf
γ∈Γω

sup
t∈[0,1]

Iω(γ(t)),

are well defined. Moreover as in [15, Lemma 4.2] we can show that

C̃(ω) = inf
u∈Xs\{0}

max
t≥0

Iω(tu) = C(ω). (3.1)

Now we will study their properties such as continuity and differentiability. Note that,
in the case s = 1, these properties where studied in [8, 14, 16]. We start our analysis
with the following result.



756 C.E. Torres Ledesma, H.C. Gutierrez, J.A. Rodríguez, and M.M. Bonilla

Lemma 3.1. For every ω < λ1, the function ω 7→ C̃(ω) is continuous.

Proof. To show this result we borrowed some ideas of [1]. Set (ωn)n∈N ⊂ (0, λ1) and
ω0 ∈ (0, λ1) such that

ωn → ω0.

The previous analysis implies that

lim inf
ωn∈(0,λ1)

C̃(ωn) > 0 and lim sup
ωn∈(0,λ1)

C̃(ωn) < +∞.

Next, let un ∈ Xs the function which satisfy

Iωn
(un) = C̃(ωn) and I ′

ωn
(un) = 0. (3.2)

In what follows, we will consider two sequences {ωnj
} and {ωnk

} such that

C̃(ωnj ) ≥ C̃(ω0), ∀nj (3.3)

and
C̃(ωnk

) ≤ C̃(ω0), ∀nk. (3.4)

Analysis of (3.3): From the above results, we know that {C̃(ωnj )} is bounded. Conse-
quently, there are a subsequence {ωnj i

} ⊂ {ωnj } and C0 > 0 such that

C(ωnj i
) → C0.

In the sequel, we will use the following notations:

ui = unj i
and ωi = ωnj i

.

Thereby,
ωi → ω0 and C̃(ωi) → C0.

We claim that C0 = C̃(ω0). In fact, from (3.3),

C0 = lim
i
C̃(ωi) ≥ C̃(ω0). (3.5)

Let w0 ∈ Xs be such that

Iω0(w0) = C̃(ω0) and I ′
ω0(w0) = 0.

Moreover, we denote by ti > 0 the real number which verifies

Iωi
(tiw0) = max

t≥0
Iωi

(tw0).

Thus, by definition of C̃(ω0),

C̃(ωi) ≤ Iωi
(tiw0).
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It is possible to prove that {ti} is a bounded sequence. Then without loss of generality
we can assume that ti → t0. Now, the Lebesgue theorem gives

lim
i
Iωi

(tiw0) = Iω0(t0w0) ≤ Iω0(w0) = C̃(ω0),

leading to
C0 ≤ C̃(ω0). (3.6)

From (3.5)–(3.6),
C̃(ω0) = C0.

The above study implies that

lim
i
C(ωnj i

) = C(ω0).

Analysis of (3.4): Note that (3.2) implies that {un} is a bounded sequence in Xs.
Consequently, there is u0 ∈ Xs such that up to a subsequence

un ⇀ u0 in Xs.

The above information permits to conclude that u0 is a nontrivial solution of the
problem

(−∆)su+ |x|2u = ω0u+ |u|2σu in RN , u ∈ Xs. (3.7)

By Fatous’ lemma, it is possible to prove that

lim inf
n

Iωn
(un) ≥ Iω0(u0). (3.8)

On the other hand, there is ζn > 0 such that

C̃(ωn) ≤ Iωn(ζnu0), ∀n.

So
lim sup

n
Iωn

(un) = lim sup
n

C̃(ωn) ≤ lim sup
n

Iωn
(ζnu0) = Iω0(u0). (3.9)

From (3.8)–(3.9),
lim

n
Iωn(un) = Iω0(u0).

The last limit yields
un → u0 in Xs.

Since {C̃(ωnj k
)} is bounded, there are a subsequence {ωnj k

} ⊂ {ωnj
} and C∗ > 0

such that
C̃(ωnj k

) → C∗.

In the sequel, we will use the following notations:

uk = unj k
and ωk = ωnj k

.
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Thus,
uk → u0, ωk → ω0 and C̃(ωk) → C∗.

In what follows, we denote by tk > 0 the real number which verifies

Iω0(tkuk) = max
t≥0

Iω0(tuk).

Thus, by definition of C̃(ω0),

C̃(ω0) ≤ Iω0(tkuk).

It is possible to prove that {tk} is a bounded sequence. Then without loss of generality
we can assume that tk → t∗. Now, the Lebesgue theorem gives

lim
k
Iω0(tkuk) = Iω0(t∗u0) = lim

k
Iωk

(tkuk) ≤ lim
k
C̃(ωk) = C∗.

Thereby,
C̃(ω0) ≤ C∗. (3.10)

On the other hand, from (3.4),

lim
k
C̃(ωk) ≤ C̃(ω0)

leading to
C∗ ≥ C̃(ω0). (3.11)

From (3.10)–(3.11),
C∗ = C̃(ω0).

The above study implies that

lim
k
C̃(ωnj k

) = C̃(ω0).

From (3.3) and (3.4),
lim

n
C̃(ωn) = C̃(ω0).

Lemma 3.2. The function w 7→ C̃(w) is a decreasing function for every w < λ1.
Proof. Let ω1 ≤ ω2 < λ1, then

Iω2(u) = 1
2∥u∥2

s − ω2
2 ∥u∥2

L2(RN ) − 1
2σ + 2∥u∥2σ+2

L2σ+2(RN )

≤ 1
2∥u∥2

s − ω1
2 ∥u∥2

L2(RN ) − 1
2σ + 2∥u∥2σ+2

L2σ+2(RN ) = Iω1(u),

which implies
Iω2(tu) ≤ Iω1(tu), ∀t ≥ 0 and u ∈ Xs,

and
max
t≥0

Iω2(tu) ≤ max
t≥0

Iω1(tu), ∀u ∈ Xs.

Therefore, by (3.1), we get
C̃(ω2) ≤ C̃(ω1). (3.12)
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Remark 3.3. Note that by (3.12) we have that C̃ is a decreasing function. Furthermore,
we can show that the function C̃ is strictly decreasing, i.e.

ω1 < ω2 implies that C̃(ω2) < C̃(ω1). (3.13)

In fact, let uω1 be a critical point with critical value C̃(ω1). Then for any t > 0 we have

C̃(ω1) = Iω1(uω1) ≥ Iω1(tuω1) > Iω2(tuω1).

Let t∗ > 0 be such that t∗uω1 ∈ Nω2 and

Iω2(t∗uω1) = sup
t>0

Iω2(tuω1).

Consequently,
C̃(ω1) > Iω2(t∗uω1) ≥ inf

Nω2
Iω2(u) = C̃(ω2).

Now, let uω ∈ Xs be the ground state solution given by Theorem 2.4, that is,

Iω(uω) = C̃(ω) and I ′
ω(uω)uω = 0. (3.14)

Then

C̃(ω) = Iω(uω) − 1
2I

′
ω(uω)uω =

(
1
2 − 1

2σ + 2

)
∥uω∥2σ+2

L2σ+2(RN ). (3.15)

Theorem 3.4. The ground state level C̃(ω) is differentiable at almost everywhere
ω < λ1. Moreover,

C̃ ′(ω) = −1
2∥uω∥2

L2(RN ).

Proof. We borrowed some ideas from [18]. Consider the ground state level

C̃(ω) = inf
u∈Nω

Iω(u) and C̃(η) = inf
u∈Nη

Iη(u), (3.16)

where

Iω(u) = 1
2



∫

RN

∫

RN

|u(x) − u(z)|2
|x− z|N+2s

dzdx+
∫

RN

|x|2u2dx




− ω

2

∫

RN

u2dx− 1
2σ + 2

∫

RN

|u|2σ+2dx

(3.17)

and

Iη(u) = 1
2



∫

RN

∫

RN

|u(x) − u(z)|2
|x− z|N+2s

dzdx+
∫

RN

|x|2u2dx




− η

2

∫

RN

u2dx− 1
2σ + 2

∫

RN

|u|2σ+2dx.

(3.18)
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Note that, for any η < λ1, we can show that there exists uη ∈ Xs \ {0} such that

Iη(uη) = C̃(η) and I ′
η(uη)uη = 0.

Furthermore, there exists t(ω, η) > 0 such that t(ω, η)uη ∈ Nω, namely
∫

RN

∫

RN

|uη(x) − uη(y)|2
|x− y|n+2s

dydx+
∫

RN

|x|2u2
ηdx

= ω

∫

RN

u2
ηdx+ t2σ(ω, η)

∫

RN

|uη|2σ+2dx

(3.19)

and t(η, η) = 1. By the implicit function theorem, t(ω, η) is differentiable with respect
to variable ω < λ1.

Define the function

F (ω, η) = Iω(t(ω, η)uη)

= t2(ω, η)
2



∫

RN

∫

RN

|uη(x) − uη(y)|2
|x− y|n+2s

dydx+
∫

RN

|x|2u2
ηdx




− t2(ω, η)ω
2

∫

RN

u2
ηdx− t2σ+2(ω, η)

2σ + 2

∫

RN

|uη|2σ+2dx.

So
∂

∂ω
F (ω, η) = ∂

∂ω
Iω(t(ω, η)uη)

= t(ω, η) ∂
∂ω

t(ω, η)∥uη∥2
Xs − t2σ+1(ω, η) ∂

∂ω
t(ω, η)∥uη∥2σ+2

L2σ+2(RN )

− t(ω, η) ∂
∂ω

t(ω, η)ω∥uη∥2
L2(RN ) − t2(ω, η)

2 ∥uη∥2
L2(RN )

= t(ω, η) ∂
∂ω

t(ω, η)
(

∥uη∥2
Xs − ω∥uη∥2

L2(RN ) − t2σ(ω, η)∥uη∥2σ+2
L2σ+2(RN )

)

− t2(ω, η)
2 ∥uη∥2

L2(RN )

= − t2(ω, η)
2 ∥uη∥2

L2(RN ).

Therefore,

C̃(ω) − C̃(η) ≤ Iω(t(ω, η)uη) − Iη(uη) = F (ω, η) − F (η, η)

= (ω − η) ∂
∂ω

F (ξ, η)
∣∣∣
ξ∈[ω,η]

= −(ω − η) t
2(ξ, η)

2 ∥uη∥2
L2(RN ), ξ ∈ [ω, η].
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From this we get

lim sup
ω→η

C̃(ω) − C̃(η)
ω − η

≤ −
∥uη∥2

L2(RN )

2 . (3.20)

We claim that the map ω 7→ uω from (0, λ1) to Xs is continuous. In fact, by con-
tradiction, suppose that there is ω0 < λ1, a sequence (ωn) ⊂ (−∞, λ1) with ωn → ω0
and δ > 0 such that

∥uωn
− uω0∥s ≥ δ.

Note that (uωn
) ⊂ Xs is a bounded Palais–Smale sequence for Iω0 at the level C̃(ω0).

In fact, by Lemma 3.1, the sequence (C̃(ωn)) ⊂ R is bounded. Now we have

Iω0(un) = Iωn(un) + ωn − ω0
2 ∥un∥2

L2(RN ),

I ′
ω0(un)φ = I ′

ωn
(un)φ+ (ωn − ω0)

∫

RN

unφdx.

Since I ′
ωn

(un) = on(1) and (un) ⊂ Xs is bounded, we have

I ′
ω0(un) → 0, as n → ∞.

Also
ωn − ω0

2 ∥un∥2
L2(RN ) → 0,

and we deduce that (Iω0(un))n∈N ⊂ R is a bounded sequence. This proves that
(uωn

) ⊂ Xs is a bounded Palais–Smale sequence for Iω0 . As in Lemma 2.3, we
deduce that uωn

→ u0 with u0 ∈ Xs a critical point of Iω0 . At this point, using the
uniqueness, we deduce that uωn

→ uω0 and this contradiction concludes the proof.
Consequently, since

C̃(ω) − C̃(η) ≥ Iω(t(ω, ω)uω) − Iη(t(η, ω)uω)
= F (ω, ω) − F (η, ω)

= (ω − η) ∂
∂ω

F (ξ, ω) ξ ∈ [ω, η]

= (ω − η)
(

− t2(ξ, ω)
2 ∥uω∥2

L2(RN )

)

by the previous analysis, we obtain

lim inf
ω→η

C̃(ω) − C̃(η)
ω − η

≥ −
∥uη∥2

L2(RN )

2 . (3.21)

Therefore, by (3.20) and (3.21) we obtain

C̃ ′(η) = −1
2∥uη∥2

L2(RN ). (3.22)
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4. BIFURCATION TYPE RESULT

In this section we will prove a bifurcation type result via variational methods. More
precisely, we have the following result.

Theorem 4.1. For every ω ∈ (0, λ1) there is a nonnegative and nontrivial solution
uω of (1.1) such that

∥uω∥s → 0 as ω → λ1.

Proof. Let φ ∈ Xs be such that

∥φ∥2
s = λ1∥φ∥2

L2(RN ).

Next,
0 < C̃(ω) ≤ max

t∈[0,1]
Iω(tφ).

For every t ∈ [0, 1], we have

Iω(tφ) =
(λ1 − ω)∥φ∥2

L2(RN )

2 t2 − t2σ+2

2σ + 2∥φ∥2σ+2
L2σ+2(RN ).

Let

g(t) = (λ1 − ω)
2 ∥φ∥2

L2(RN )t
2 −

∥φ∥2σ+2
L2σ+2(RN )

2σ + 2 t2σ+2.

By elementary computations, we can show that g attains its maximum at the point

t0 =
(

(λ1 − ω)∥φ∥2
L2(RN )

∥φ∥2σ+2
L2σ+2(RN )

) 1
2σ

.

Hence

0 < C̃(ω) ≤ g(t0) =
(

1
2 − 1

2σ + 2

) [(λ1 − ω)∥φ∥2
L2(RN )

] 2σ+2
2σ

∥φ∥
2σ+2

σ

L2σ+2(RN )

,

so that
lim

ω→λ1
C̃(ω) = 0.

From this it is easy to deduce that

lim
ω→λ1

∥uω∥s = 0,

where uω is given by Theorem 2.4. Indeed, since

C̃(ω) = Iω(uω) = 1
2∥uω∥2

s − ω

∫

RN

F (uω)dx
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and
0 = I ′

ω(uω)uω = ∥uω∥2
s − ω

∫

RN

f(uω)uωdx,

where

f(t) = |t| + 1
ω

|t|2σt and F (t) =
t∫

0

f(τ)dτ = |t|2
2 + 1

ω(2σ + 2) |t|2σ+2.

Moreover, this function satisfies the Ambrosetti–Rabinowitz condition with θ = 2σ+ 2.
Hence,

C̃(ω) = Iω(uω) − 1
2σ + 2I

′
ω(uω)uω

=
(

1
2 − 1

2σ + 2

)
∥uω∥2

s + ω

∫

RN

(
1

2σ + 2f(uω)uω − F (uω)
)
dx

≥
(

1
2 − 1

2σ + 2

)
∥uω∥2

s.

This show that ∥uω∥s → 0 as ω → λ1.
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