PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Colossal dielectric constant of NaNbO3 doped BaTiO3 ceramics

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
BaTiO3 ceramics doped with 0.40 mol% NaNbO3 were prepared using a traditional approach by sintering at temperature of 1250 ºC to 1290 ºC. The prepared ceramics was characterized by very good dielectric properties, such as high dielectric constant (1.5 × 105), low dielectric loss (0.1), and good dielectric temperature stability in the −40 ºC to 100 ºC range for the sample sintered below 1270 ºC. The dielectric characteristics obtained with XPS confirmed that Ti4+ ions remain in the state without any change. The huge increase in dielectric constant in NaNbO3 doped BaTiO3 samples occurs when large amount of Ba2+ ions are excited to a high energy bound state of Ba2+ − e or Ba+ to create electron hopping conduction. For samples with the content of NaNbO3 higher than 0.40 mol%, or sintering temperature higher than 1280 ºC, compensation effect is dominated by cation vacancies with sharply decreasing dielectric constant and increased dielectric loss. The polaron effect is used to explain the relevant mechanism of giant dielectric constant appearing in the ferroelectric phase.
Słowa kluczowe
Wydawca
Rocznik
Strony
322--329
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
  • School of Materials Science and Engineering, Hubei University, Wuhan 430062
autor
  • School of Physics and Electronic Engineering, Hubei University, Wuhan 430062
autor
  • Department of Applied Sciences, University of Technology, Baghdad, Iraq
autor
  • School of Materials Science and Engineering, Hubei University, Wuhan 430062
Bibliografia
  • [1] Gervais J., Servoin L., Baumard J.F., Denoyer F., Solid State Commun., 41 (1982), 345.
  • [2] Ravez J., Simon A., J. Solid State Chem., 162 (2001), 260.
  • [3] Cao W.Q., Li F.L., Ismail M.M., Xiong G., Jpn. J. Appl. Phys., 51 (2012), 041503.
  • [4] Yoon S.H., Kim H.J., J. Appl. Phys., 92 (2002), 1039.
  • [5] Raevski I.P., Prosandeev S.A., J. Phys. Chem. Solids, 63 (2002), 1939.
  • [6] Abdelkefi H., Khemakhem H., Vélu G., Carru J.C., M Uhll R.V., Solid State Sci., 6 (2004), 1347.
  • [7] Benlahrache M.T., Benhamla N., Achour S., J. Eur. Ceram. Soc., 24 (2004), 1493.
  • [8] Hsiao Y.J., Chang Y.H., Chang Y.S., Fang T.H., Chai Y.L., Chen G.J., Huang T.W., Mater. Sci. Eng. B-Adv., 136 (2007), 129.
  • [9] Desu S.B., Payne D.A., J. Am. Ceram. Soc., 73 (1990), 3407.
  • [10] Park Y., Kim Y.H., Kim H.G., Mater. Lett., 28 (1996), 101.
  • [11] Rahaman M.N., Manalert R., J. Eur. Ceram. Soc., 18 (1998), 1063.
  • [12] Lu D.Y., Sugano M., Sun X.Y., Su W.H., Appl. Surf. Sci., 242 (2005), 318.
  • [13] Kumar S., Raju V.S., Kutty T.R.N., Appl. Surf. Sci., 206 (2003), 250.
  • [14] Ni L., Chen X.M., Appl. Phys. Lett., 91 (2007), 122905.
  • [15] Zhang L., Tang Z.J., Phys. Rev. B, 70 (2004), 174306.
  • [16] Subramanian M.A., Li D., Duan N., Reisner B.A., Sleight A.W., J. Solid State Chem., 151 (2000), 323.
  • [17] Yashima M., Ali R., Solid State Ionics, 180 (2009), 120.
  • [18] Moreira M.L., Paris E.C., Nascimento G.S., Longo V.M., Sambrano J.R., Mastelaro V.R., Bernardi M.I.B., Andrés J., Varela J.A., Longo E., Acta Mater., 57 (2009), 5174.
  • [19] Lunkenheimer P., Bobnar V., Pronin A.V., Ritus A.I., Volkov A.A., Loidl A., Phys. Rev. B, 66 (2002), 052105.
  • [20] Liu Y.Y., Chen X.M., Liu X.Q., Li L., Appl. Phys Lett., 90 (2007), 192905.
  • [21] Homes C.C., Vogt T., Shapiro S.M., Wakimoto S., Ramirez A.P., Science, 293 (2001), 673.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c23cbb41-9177-4773-9942-61e045ddc8fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.