PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Behaviour of a non-newtonian fluid in a helical tube under the influence of thermal buoyancy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work is an evaluative study of heat transfer in the helical-type heat exchanger. The fluid used is non-Newtonian in nature and is defined by Oswald’s model. The work was performed numerically by solving each of the Navier–Stokes equations and the energy equation using the package ANSYS-CFX. Following are the aspects that have been dealt with in this paper: the effects of thermal buoyan-cy, fluid nature and the tube shape on the heat transfer, and the fluid comportment. The interpretation of the obtained results was done by analyzing the isotherms and the streamlines. The mean values of the Nusselt number were also obtained in terms of the studied parame-ters. The results of this research enabled us to arrive at the following conclusion: the intensity of thermal buoyancy and the nature of the fluid affect the heat transfer distribution but keep the overall rate of heat transfer the same.
Rocznik
Strony
111--118
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
  • Faculty of Physics, Oran University of Science and Technology - Mohamed Boudiaf, BP 1505, El-Menaouer, Oran, 31000, Algeria
  • Laboratory of Sciences and Marine Engineering, Faculty of Mechanical Engineering, Oran University of Science and Technology - Mohamed Boudiaf, BP 1505, El-Menaouer, Oran, 31000, Algeria
  • Laboratory of Sciences and Marine Engineering, Faculty of Mechanical Engineering, Oran University of Science and Technology - Mohamed Boudiaf, BP 1505, El-Menaouer, Oran, 31000, Algeria
Bibliografia
  • 1. Ibrahim M, Algehyne EA, Saeed T, Berrouk A S, Chu Y M, Cheraghi-an G. Assessment of economic, thermal and hydraulic performances a corrugated helical heat exchanger filled with non-Newtonian nanofluid. Scientific Reports. 2021; 11: 11568.
  • 2. Naphon P, Wiriyasart S, Prurapark R, Srichat A. Numerical study on the nanofluid flows and temperature behaviors in the spirally coiled tubes with helical ribs. Case Studies in Thermal Engineering. 2021; 27: 101204.
  • 3. Abu-Hamdeh NH, Alsulami RA, Rawa MJH, Aljinaidi AA, Alazwari M A, Eltaher MA, Almitani KA, Alnefaie KH, Abusorrah AM, Sindi HF, Goodarzi M, Safaei MR. A detailed hydrothermal investigation of a helical micro double-tube heat exchanger for a wide range of helix pitch length. Case Studies in Thermal Engineering. 2021; 28:101413.
  • 4. Abdzadeh B, Hosainpour A, Jafarmadar S, Sharifian F. Thermo-entropic evaluation of the effect of air injection into horizontal helical tube. Journal of Energy Storage. 2021; 38:102542.
  • 5. Zhou C, Yao Y, Ni L. Development of heat transfer correlations for multi-row helically coile d tub e heat exchangers use d in surface wa-ter heat pump systems. International Journal of Heat and Mass Transfer. 2020; 163: 120491.
  • 6. Jha VK, Bhaumik SK. Enhanced cooling in compact helical tube cross-flow heat exchanger through higher area density and flow tor-tuosity. International Journal of Heat and Mass Transfer. 2020; 150: 119270.
  • 7. Zhao H, Li X, Wu Y, Wu X. Friction factor and Nusselt number corre-lations for forced convection in helical tubes. International Journal of Heat and Mass Transfer. 2020; 155: 119759.
  • 8. Zhou C, Zarrella A, Yao Y, Ni L. Analysis of the effect of icing on the thermal behavior of helical coil heat exchangers in surface water heat pump applications. International Journal of Heat and Mass Transfer. 2022; 183: 122074.
  • 9. Cao Y, Ayed H, Anqi A E, Tutunchian O, Dizaji H S, Pourhedayat S. Helical tube-in-tube heat exchanger with corrugated inner tube and corrugated outer tube: experimental and numerical study. Interna-tional Journal of Thermal Sciences. 2021; 170: 107139.
  • 10. Ahn K, Lee KH, Lee JS, Won C, Yoon J. Analytic spring back predic-tion in cylindrical tube bending for helical tube steam generator. Nuclear Engineering and Technology. 2020; 52: 2100-2106.
  • 11. Farnam M, Khoshvaght-Aliabadi M, Asadollahzadeh MJ. Intensified single-phase forced convective heat transfer with helical-twisted tube in coil heat exchangers. Annals of Nuclear Energy. 2021; 154: 108108.
  • 12. Eisapour A H, Naghizadeh A, Eisapour M, Talebizadehsardari P. Optimal design of a metal hydride hydrogen storage bed using a hel-ical coil heat exchanger along with a central return tube during the absorption process. International journal of hydrogen energy. 2021; 46: 14478-14493.
  • 13. Gul S, Erge O, Oort E V. Frictional pressure losses of Non-Newtonian fluids in helical pipes: Applications for automated rheology measurements. Journal of Natural Gas Science and Engineering. 2020; 73: 103042.
  • 14. Gul S, Erge O, Oort E V. Helical Pipe Viscometer System for Auto-mated Mud Rheology Measurements. IADC/SPE International Drill-ing Conference and Exhibition. 2020; IADC/SPE-199572-MS.
  • 15. Mokeddem M, Laidoudi H, Bouzit M. 3D Simulation of Dean vortices at 30 position of 180 curved duct of square cross-section under op-posing buoyancy. Defect and Diffusion Forum. 2018; 389: 153-163.
  • 16. Mokeddem M, Laidoudi H, Makinde OD, Bouzit M. 3D Simulation of incompressible poiseuille flow through 180° curved duct of square cross-section under effect of thermal buoyancy. Periodica Polytech-nica Mechanical Engineering. 2019; 63: 257-269.
  • 17. Mokeddem M, Laidoudi H, Bouzit M. Computational Analyses of Flow and Heat Transfer at 60° Position of 180° Curved Duct of Square Cross-Section. Diffusion Foundations. 2020; 26: 53-62.
  • 18. Cao X, Du T, Liu Z, Zhai H. Experimental and numerical investigation on heat transfer and fluid flow performance of sextant helical baffle heat exchangers. International Journal of Heat and Mass Transfer. 2019; 142: 118437.
  • 19. Cao X, Chen D, Du T, Liu Z, Ji S. Numerical investigation and experimental validation of thermo-hydraulic and thermodynamic performances of helical baffle heat exchangers with different baffle configurations. International Journal of Heat and Mass Transfer. 2020; 160: 120181.
  • 20. Chen Y, Tang H, Wu J, Gu H, Yang S. Performance comparison of heat exchangers using sextant/trisection helical baffles and segmental ones. Chinese Journal of Chemical Engineering. 2019; 27: 2892–2899.
  • 21. Chen D, Zhang R, Cao X, Chen L, Fan X. Numerical investigation on performance improvement of latent heat exchanger with sextant helical baffles. International Journal of Heat and Mass Transfer. 2021; 178: 121606.
  • 22. Jamshidi N, Mosaffa A. Investigating the effects of geometric parameters on finned conical helical geothermal heat exchanger and its energy extraction capability. Geothermics. 2018; 76: 177–189.
  • 23. Abu-Hamdeh NH, Almitani KH, Alimoradi A. Exergetic performance of the helically coiled tubeheat exchangers: Comparison the sector-by-sector with tube in tube types. Alexandria Engineering Journal. 2021; 60: 979–993.
  • 24. Abu-Hamdeh NH, Bantan RAR, Tlili I. Analysis of the thermal and hydraulic performance of the sector-by-sector helically coiled tube heat exchangers as a new type of heat exchangers. International Journal of Thermal Sciences. 2020; 150: 106229.
  • 25. Liu S, Huang W, Bao Z, Zeng T, Qiao M, Meng J. Analysis, prediction and multi-objective optimization of helically coiled tube-in-tube heat exchanger with double cooling source using RSM. International Journal of Thermal Sciences. 2021; 159: 106568.
  • 26. Mirgolbabaei H. Numerical investigation of vertical helically coiled tube heat exchangers thermal performance. Applied Thermal Engineering. 2018; 136: 252–259.
  • 27. Javadi H, Ajarostaghi S S M, Pourfallah M, Zaboli M. Performance analysis of helical ground heat exchangers with different configurations. Applied Thermal Engineering. 2019; 154: 24–36.
  • 28. Maghrabie H M, Attalla M, Mohsen AAA. Performance assessment of a shell and helically coiled tube heat exchanger with variable orientations utilizing different nanofluids. Applied Thermal Engineering. 2021; 182: 116013.
  • 29. Vivekanandan M, Venkatesh R, Periyasamy R, Mohankumar S, Devakumar L. Experimental and CFD investigation of helical coil heat exchanger with flower baffle. Materials Today: Proceedings. 2021; 37: 2174–2182.
  • 30. Sadhasivam C, Murugan S, Manikandaprabu P, Priyadharshini SM, Vairamuthu J. Computational investigations on helical heat flow exchanger in automotive radiator tubes with computational fluid dynamics, Materials Today : Proceedings. 2021; 37: 2352–2355.
  • 31. Gokulnathan E, Pradeep S, Jayan N, Bhatlu M L D, Karthikeyan S. Review of heat transfer enhancement on helical coil heat exchanger by additive passive method, Materials Today. Proceedings. 2021; 37: 3024–3027.
  • 32. Padmanabhan S, Reddy OY, Yadav KVAK, Raja VKB, Palanikumar K. Heat transfer analysis of double tube heat exchanger with helical inserts, Materials Today: Proceedings. 2021; 46: 3588–3595.
  • 33. Naik B, Hosmani A K, Kerur S M, Jadhav CC, Benni S, Annigeri S, Javali T, Aralikatti P. Numerical analysis of two tube helical heat ex-changer using various nano-fluids, Materials Today: Proceedings. 2021; 47: 3137–3143.
  • 34. Kumar PCM, Chandrasekar M. CFD analysis on heat and flow char-acteristics of double helically coiled tube heat exchanger handling MWCNT/water nanofluids. Heliyon. 2019; 5: e02030.
  • 35. Dhumal G S, Havaldar SN, Numerical investigation of heat exchang-er with inserted twisted tape inside and helical fins on outside pipe surface. Materials Today. Proceedings. 2021; 46: 2557–2563.
  • 36. Kareem R. Optimisation of Double Pipe Helical Tube Heat Exchang-er and its Comparison with Straight Double Tube Heat Exchanger. J. Inst. Eng. India Ser. C. 2017; 98, 587–593.
  • 37. Zainith P, Mishra N K. Heat Transfer Enhancement of Al2O3-Based Nanofluid in a Shell and Helical Coil Heat Exchanger.Advances in Applied Mechanical Engineering. Lecture Notes in Mechanical Engi-neering. 2020. https://doi.org/10.1007/978-981-15-1201-8_18
  • 38. Miansari M., Jafarzadeh A., Arasteh H. and Toghraie D. (2021), Thermal performance of a helical shell and tube heat exchanger without fin, with circular fins, and with V-shaped circular fins applying on the coil, Journal of Thermal Analysis and Calorimetry,143, 4273–4285.
  • 39. Bara B, Nandakumar K, Masliyah J H. An experimental and numeri-cal study of the Dean problem: flow development towards two-dimensional multiple solutions. Journal of Fluid Mechanics. 1992; 244: 339–376.
  • 40. Helin L, Thais L, Mompean G. Numerical simulation of viscoelastic Dean vortices in a curved duct. Journal of Non-Newtonian Fluid Me-chanics. 2009; 156: 84–94.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c23be698-3eb9-4d6b-9db6-a33b437087e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.