PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of ethylene oxide groups in dodecylamine polyoxyethylene ether on rutile flotation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To study the number of ethylene oxide (EO) groups effect on the flotation of rutile, three collectors with different EO number were evaluated: AC1203 (with three EO number), AC1210 (with ten EO number), AC1215 (with fifteen EO number). In addition to the flotation experiments, zeta potential measurements, collector adsorption experiments and XPS analysis were conducted to elucidate the adsorption mechanism. The results of flotation demonstrated that dodecylamine polyoxyethylene ether exhibited a profound collecting ability towards rutile mineral, it was worth mentioned that the recovery of rutile decreased with the increase of EO number. On the basis of zeta potential tests and XPS analysis, both protonated and neutral tertiary amine groups could act with rutile surface through electrostatic effect and hydrogen bond interaction. Furthermore, the results of collector adsorption experiments showed that with the increase of EO number, a lower adsorption density of collectors on rutile surface could be caused due to the steric hinder effects.
Rocznik
Strony
127--135
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
autor
  • Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS
  • National Engineering Research Center for Multipurpose Utilization of Nonmetallic Mineral Resources, Zhengzhou 450006, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology
autor
  • School of Resource and Safety Engineering, Wuhan Institute of Technology
autor
  • School of Resource and Safety Engineering, Wuhan Institute of Technology
Bibliografia
  • ACKERMAN, P. K., HARRIS, G. H., KLIMPEL, R. R., APLAN, F. F., 1987. Evaluation of flotation collectors for copper sulfides and pyrite, I. Common sulfhydryl collectors. International Journal of Mineral Processing. 21(1-2), 105-127.
  • BARAGETTI, S., VILLA, F., 2014. A dynamic optimization theoretical method for heavy loaded vibrating screens, Nonlinear Dyn. 78, 609–627.
  • CHANDRAVANSHI, M.L., MUKHOPADHYAY, A.K., 2017. Analysis of variations in vibration behavior of vibratory feeder due to change in stiffness of helical springs using FEM and EMA methods, J. Braz. Soc. Mech. Sci. Eng. 39, 3343–3362.
  • CHANDRAVANSHI, M.L., MUKHOPADHYAY, A.K., 2017. Dynamic analysis of vibratory feeder and their effect on feed particle speed on conveying surface, Measurement. 101, 145–156.
  • DING, C., SONG, F., SONG, B., Men, X., 2012. The finite element analysis of vibrating screen, Appl. Mech. Mater. 141, 134–138.
  • GAO, G.L., 2012. A new single degree-of-freedom resonance device, J. Cent. South Univ. 19, 2782–2787.
  • IWATA, Y., KOMATSUZAKI, T., KITAYAMA, S., TAKASAKI, T., 2016. Study on optimal impact damper using collision of vibrators, J. Sound Vib. 361, 66–77.
  • JIANG, H., ZHAO, Y., DUAN, C., LIU, C., WU, J., DIAO, H., LV, P. , QIAO, J., 2017. Dynamic characteristics of an equal-thickness screen with a variable amplitude and screening analysis, Powder Technol. 311, 239–246.
  • KELLY, E.G., SPOTTISWOOD, D.S., 1982. Introduction to Mineral Processing. John Wiley & Sons Inc., USA.
  • LOGAN, D.L. 2011. A First Course in the Finite Element Method. Cengage Learning, USA.
  • MICHALCZYK, J., CIEPLOK, G., 2016. Maximal amplitudes of vibrations of the suspended screens during the transient resonance, Arch. Min. Sci. 61, 537–552.
  • MICHALCZYK, J., BEDNARSKI, Ł., GAJOWY, M., 2017. Feed material influence on the dynamics of the suspended screen at its steady state operation and transient states, Arch. Min. Sci. 62(1), 145–161.
  • PARLAR, J., 2010. Vibration Analysis & Vibrating Screens: Theory & Practice. PhD. Thesis, McMaster University, Hamilton, Ontario.
  • PENG, L., FANG, R., FENG, H., ZHANG, L., MA, W., HE, X., 2018. A more accurate dynamic model for dual-side excitation large vibrating screens, J. Vibroeng. 20, 858–871.
  • PENG, L., JIANG, H., CHEN, X., LIU, D., FENG, H., ZHANG, L., ZHAO, Y., LIU, C., 2019. A review on the advanced design techniques and methods of vibrating screen for coal preparation, Powder Technol. 347, 136–147.
  • PENG, L.P., LIU, C.S., 2015. Stiffness identification of four-point-elastic-support rigid plate, J. Cent. South Univ. 22, 159–167.
  • PENG, L.P., LIU, C.S., LI, J., WANG, H., 2014. Static-deformation based fault diagnosis for damping spring of large vibrating screen, J. Cent. South Univ. 21, 1313–1321.
  • RAMATSETSE, B.I., MATSEBE, O., MPOFU, K., DESAI, D.A., 2013. Conceptual design framework for developing a reconfigurable vibrating screen for small and medium mining enterprises, SAIIE25 Proceedings, Stellenbosch, South Africa.
  • RAMATSETSE, B., MPOFU, K., MAKINDE, O., 2017. Failure and sensitivity analysis of a reconfigurable vibrating screen using finite element analysis, Case Stud. Eng. Fail. Anal. 9, 40–51.
  • RAMATSETSE, B., MPOFU, K., MAKINDE, O.A., 2019. Analysis and performance investigation of a reconfigurable vibrating screen machine for mining and mineral processing industries, Procedia CIRP 84, 936–941.
  • RODRIGUEZ, C.G., MONCADA, M.A., DUFEU, E.E., RAZETO, M.I., 2016. Nonlinear model of vibrating screen to determine permissible spring deterioration for proper separation, Shock. Vib., 1–7.
  • ROTICH, N., TUUNILA, R., ELKAMEL, A., LOUHI-KULTANEN, M., 2017. Dynamic and perturbative system analysis of granular material in a vibrating screen, Adv. Powder Technol. 78, 3257–3264.
  • SHIRAZI, A.R., 2019. Optimization of secondary screens at the Gohar Zamin Iron Ore Complex, Technical Report, Sirjan, Iran.
  • SLEPYAN, L.I., SLEPYAN, V.I., 2014. Coupled mode parametric resonance in a vibrating screen model, Mechanical Syst. Signal Process. 43, 295–304.
  • SOLDINGER, M., 1999. Interrelation of stratification and passage in the screening process, Miner. Eng. 12, 497–516.
  • SOLDINGER, M., 2002. Transport velocity of a crushed rock material bed on a screen, Miner. Eng. 15, 7–17.
  • SONG, B., SONG, F.Z., DING, C.G., 2013. Vibration sensitivity analysis of the secondary isolation support, Appl. Mech. Mater. 278–280, 18–22.
  • VERGNANO, A., BERSELLI, G., PELLICCIARI, M., 2017. Parametric virtual concepts in the early design of mechanical systems: a case study application, Int. J. Interact. Des. Manuf. 11, 331–340.
  • WANG, L., DING, Z., MENG, S., ZHAO, H., SONG. H., 2017. Kinematics and dynamics of a particle on a non-simple harmonic vibrating screen, Particuology. 32, 167–177.
  • WANG, G., TONG, X., 2011. Screening efficiency and screen length of a linear vibrating screen using DEM 3D simulation, Min. Sci. Technol. 21, 451–455.
  • WILLS, B.A., NAPIER-MUNN, T.J., 2007. Wills' Mineral Processing Technology. 7th ed., Elsevier, England.
  • XIONG, X., NIU, L., GU, C., WANG, Y., 2017. Vibration characteristics of an inclined flip-flow screen panel in banana flip-flow screens, J. Sound Vib. 411, 108–128.
  • YANTEK, D.S., LOWE, M.J., 2011. Analysis of a mechanism suspension to reduce noise from horizontal vibrating screens, Noise Control Eng. J. 59, 568–580.
  • ZHANG, X., WEN, B., ZHAO, C., 2017. Vibratory synchronization transmission of a cylindrical roller in a vibrating mechanical system excited by two exciters, Mech. Syst. Signal Process. 96, 88–103.
  • ZHANG, Z., 2016. Strain modal analysis and fatigue residual life prediction of vibrating screen beam, J. Measur. Eng. 4, 217–223.
  • ZHAO, Y., LIU, C., HE, X., ZANG, C., WANG, Y., REN, Z., 2009. Dynamic design theory and application of large vibrating screen, Procedia Earth Planet. Sci. 1(1), 776–784.
  • ZHAO, L., ZHAO, Y., LIU, C., LI, J., DONG, H., 2011. Simulation of the screening process on a circularly vibrating screen using 3D-DEM, Min. Sci. Technol. 21(5), 677–680.
  • ZHOU, Z., HUANG, L., JIANG, H., WEN, P., ZHAO, L., ZHAO, Y., DUAN, C., LUO, Z., WANG, Z., LIU, C., ZIMING, W., 2019. Kinematics of elastic screen surface and elimination mechanism of plugging during dry deep screening of moist coal, Powder Technol. 346, 452–461.
  • ZHU, H., GE, S., YU, X., 2004. A novel low-noise vibrating screen, Coal Prep. 24, 85–96.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c23b0844-021f-4213-b0f3-d9a589c133eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.