PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A model of the steam compression process in a piston reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper discusses the possible determination of steam parameters in a new type of piston machine for steam compression to generate supercritical water parameters. It presents a calculation model that allows one to simulate the process of steam compression in a cylinder with volume regulated by the piston position. In each calculation step, the steam parameters were determined on the basis of fast adiabatic changes which were corrected by the effect of leakage and heat transfer occurrence. The seal of the reactor was assumed to be a compression ring. Depending on the pressure drop on the seal, subcritical and supercritical flow was taken into account. The leak was corrected by the coefficient of flow contraction. Heat transfer was determined by equations for the Nusselt number for water and steam from the homogenous area. The programmed model allows one to simulate changes in the thermodynamic parameters of steam during the process of steam compression with any calculation step. The results presented in this paper show that the application of one compression ring allows us to obtain supercritical steam parameters. Various degrees of sealing leak tightness and their impact on the changeability of steam parameters were analyzed. Heat transfer was shown to have an impact not only on changes in steam temperature, but also on pressure. This paper analyzes the impact of the temperature of the walls of the compression chamber on the value and direction of heat transfer.
Rocznik
Strony
261--284
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
  • Poznan University of Technology, Institute of Thermal Engineering, Piotrowo 3a, 60-965, Poznań, Poland
  • Grupa inżynieryjna Konstrubowski Sp. z o.o., Święty Wojciech 7/13, 61-749 Poznań, Poland
  • Poznan University of Technology, Institute of Thermal Engineering, Piotrowo 3a, 60-965, Poznań, Poland
Bibliografia
  • [1] Pińkowska H.: High-temperature biomass gasification in supercritical water. Przem. Chem. 86(2007), 11, 1044–1050 (in Polish).
  • [2] Pińkowska H.: Low-temperature biomass gasification in subcritical and supercritical water. Przem. Chem. 86(2007), 7, 599–606 (in Polish).
  • [3] Jitka H.: Status report on thermal gasification of biomass and waste 2021. IEA Bioenergy, Task 33, 2022. https://www.ieabioenergy.com/wp-content/uploads/2022/03/Status-Report2021_final.pdf (accessed 13 Apr. 2023).
  • [4] Ashok A., Katebah M.A., Linke P., Kumar D., Arora D., Fischer K., Jacobs T., Al-Rawashdeh M.: Review of piston reactors for the production of chemicals. Rev. Chem. Eng. 39(2023), 1, 1–30. doi: 10.1515/revce-2020-0116
  • [5] Hendry D., Miller A., Jacoby W.: Turbulent operation of a continuous reactor for gasification of alcohols in supercritical water. Ind. Eng. Chem. Res. 51(2012), 6, 2578–2585. doi: 10.1021/ie201887e
  • [6] Borowczyk T.: Influence of charge movement in inlet manifold on combustion process in compression ignition engines. PhD thesis, Poznan University of Technology, Poznań 2014 (in Polish).
  • [7] Atakan B., Kaiser S.A., Herzler J., Porras S., Banke K., Deutschmann O., Kasper T., Fikri M., Schießl R., Schröder D., Rudolph Ch., Kaczmarek D., Gossler H., Drost S., Bykov V., Maas M., Schulz Ch.: Flexible energy conversion and storage via hightemperature gas-phase reactions: The piston engine as a polygeneration reactor. Renew. Sustain. Energy Rev. 133(2020), 110264. doi: 10.1016/j.rser.2020.110264
  • [8] Vetter H.: The Sulzer oil-free labyrinth piston compressor. In: Proc. Int. Compressor Engineering Conf., Purdue 1972, paper 33, 221–228. https://docs.lib.purdue.edu/icec/33 (accessed 14 March 2023).
  • [9] Joachimiak D., Krzyślak P.: Comparison of results of experimental research with numerical calculations of a model one-sided seal. Arch. Thermodyn. 36(2015), 2, 61–74. doi: 10.1515/aoter-2015-0015
  • [10] Graunke K.: Labyrinth leakage flow in a labyrinth-piston compressor. Sulzer Techn. Rev. 67(1985), 30–33.
  • [11] Feng J., Wang L., Yang H., Peng X.: Numerical investigation on the effects of structural parameters of labyrinth cavity on sealing performance. Math. Probl. Eng. 2018(2018), 1–12. doi: 10.1155/2018/5273582
  • [12] Larjola J., Honkatukia J., Sallinen P., Backman J.: Fluid dynamic modeling of a free piston engine with labyrinth seals. J. Ther. Sci. 19(2010), 2, 141–147. doi:10.1007/s11630-010-0141-2
  • [13] Trütnovsky K.: Noncontacting Seals; Basics and Applications of Slot and Labyrinth Fluid-Flow Seals. VDI-Verlag bh Dusseldorf, Publishing House of the Association of German Engineers 1964.
  • [14] Melnik V.A.: Calculating leaks in rotor-machine radial slot seals. Part 2. A method for integral slot flow rate constants. Chem. Pet. Eng. 45(2009), 11–12, 702–706. doi:10.1007/s10556-010-9265-1
  • [15] Melnik V.A.: Calculating leaks in rotary machineradial slot seals. Part 3. Method for calculating leakstaking account of the inlet section. Chem. Pet. Eng. 46(2010), 3–4, 146–152. doi: 10.1007/s10556-010-9308-7
  • [16] Melnik V.A.: Computed universal dependence for determining leakage of media through groove seals. Chem. Pet. Eng. 48(2013), 11–12, 751–759. doi: 10.1007/s10556-013-9691-y
  • [17] Joachimiak D., Krzyślak P.: A model of gas flow with friction in a slotted seal. Arch. Thermodyn. 37(2016), 3, 95–108. doi: 10.1515/aoter-2016-0022
  • [18] Hao X.H., Ju Y.L., Lu Y.J.: Experimental study on the sealing clearance between the labyrinth sealing displacer and cylinder in the 10 K G-M refrigerator. Cryogenics (Guildf) 51(2011), 5, 203–208. doi: 10.1016/j.cryogenics.2011.02.002
  • [19] Asok S.P.: Sankaranarayanasamy K., Sundararajan T., Rajesh K., Sankar Ganeshan G.: Neural network and CFD-based optimisation of square cavity and curved cavity static labyrinth seals. Tribol. Int. 40(2007), 7, 1204–1216. doi: 10.1016/j.triboint.2007.01.003
  • [20] Joachimiak D., Krzyślak P.: Analysis of the gas flow in a labyrinth seal of variablepitch. J. Appl. Fluid Mech. 12(2019), 3, 921–930. doi: 10.29252/JAFM.12.03.29074
  • [21] Chun Y.H., Ahn J.: Effects of geometric parameters of a staggered labyrinth seal on leakage flow. J. Mech. Sci. Technol. 37(2023), 6, 2959–2968. doi: 10.1007/s12206-023-0522-6
  • [22] Joachimiak D.: Novel Method of the Seal Aerodynamic Design to Reduce Leakage by Matching the Seal Geometry to Flow Conditions. Energies (Basel) 14(2021), 23,7880. doi: 10.3390/en14237880
  • [23] Yuan H., Pidaparti S., Wolf M., Edlebeck J., Anderson M.: Numerical modeling of supercritical carbon dioxide flow in see-through labyrinth seals. Nucl. Eng. Des.293(2015), 436–446. doi: 10.1016/j.nucengdes.2015.08.016
  • [24] Dai Z., Wang C., Zhang D., Tian W., Qiu S., Su G.H.: Design and analysis of a freepiston stirling engine for space nuclear power reactor. Nucl. Eng. Tech., 53(2021), 2, 637–646. doi: 10.1016/j.net.2020.07.011
  • [25] Lyubarskyy P., Bartel D.: 2D CFD-model of the piston assembly in a diesel engine for the analysis of piston ring dynamics, mass transport and friction. Tribol. Int.104(2016), 352–368. doi: 10.1016/j.triboint.2016.09.017
  • [26] Wolff A., Koszałka G.: Influence of engine load on piston ring pack operation of an automotive IC engine. Combust. Engines 190(2022), 3, 88–94. doi: 10.19206/CE141737
  • [27] Wolff A.: Modelling of flow phenomena of the system piston-rings-cylinder of an internal combustion engine. Prace Naukowe Politechniki Warszawskiej. Mechanika 251. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2013 (in Polish).
  • [28] Shipeng W., Xuexing D., Junhua D., Jingmo W.: Steady State Characteristics of Spiral Groove Floating Ring Gas Film Seal Considering Temperature Viscosity Effect. J. Appl. Fluid Mech. 16(2023), 4, 891–904. doi: 10.47176/jafm.16.04.1432
  • [29] Kretzschmar H-J., Wagner W.: International Steam Tables. Properties of Water and Steam based on the Industrial Formulation IAPWS-IF97. Springer, Vieweg Berlin, Heidelberg 2019. doi: 10.1007/978-3-662-53219-5
  • [30] Brunner G.: Hydrothermal and Supercritical Water Processes. 5, Elsevier, 2014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c237f7d2-21ee-4583-8ebe-a8a0c9f0a674
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.