Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The aim of this study was to determine the effect of bone mineral density (BMD) on the stress distribution in pelvic-hip complex (PHC) model which included bone structures and soft tissues. Bone mass changes in osteoporosis and osteopenia were considered in this analysis. In addition, the relations between force direction and stress distribution causing PHC fractures were determined. Methods: This paper presents the development and validation of a detailed 3D finite element model with high anatomical fidelity of the PHC and BMD changes in trabecular and cortical bones, modelled based on CT scans. 10 kN loading was induced on a model consisting of 8 ligaments, the pelvis, sacrum, femur in front and side directions. Results: For validation, the results of this model were compared to physiological stress in standing position and previous results with high-energy crashes under side impact load. Analysis of side-impact indicated the influence of BMD on femoral neck fractures, acetabular cartilage and sacroiliac joint delaminations. Front-impact analysis revealed the inferior pubic ramus, femoral neck fractures and soft tissue injuries, i.e., acetabular cartilage and symphysis pubis in osteoporosis and osteopenia. Conclusions: The elaborated PHC model enables effective prediction of pelvis injuries in high-energy trauma, according to Young-Burgess classification, and the determination of the influence of BMD reduction on pelvis trauma depending on force direction. The correlation between BMD and stress distribution causing varying injuries was determined.
Czasopismo
Rocznik
Tom
Strony
29--38
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Zielona Góra, Poland
autor
- Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Zielona Góra, Poland
autor
- Department of Mechanics and Applied Computer Science, Faculty of Mechanical Engineering, Military University of Technology, Warszawa, Poland
autor
- Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Zielona Góra, Poland
Bibliografia
- [1] ALTON T.B., GEE A.O., Classifications in Brief: Young and Burgess Classification of Pelvic Ring Injuries, Clin. Orthop. Relat. Res., 2014, 472, 2338–2342.
- [2] BAUER J.S., SIDORENKO I., MUELLER D., BAUM T., ISSEVER A.S., ECKSTEIN F., RUMMENY J., LINK T.M., RAETH Ch.W., Prediction of bone strength by μCT and MDCT-based finite-elementmodels: How much spatial resolution is needed?, Eur. J. Radiol., 2014, 83, 36–42.
- [3] BĘDZIŃSKI R., WYSOCKI M., KOBUS K., SZOTEK S., KOBIELARZ M., KUROPKA P., Biomechanical effect of rapid mucoperiosteal palatal tissue expansion with the use of osmotic expanders, J. Biomech., 2011, 44, 1313–1320.
- [4] BURGE R., DAWSON-HUGHES B., SOLOMON D.H., WONG J.B., KING A., TOSTESON A., Incidence and Economic Burden of Osteoporosis-Related Fractures in the United States 2005–2025, J. Bone Min. Res., 2006, 3, 467–475.
- [5] BURR D.B., The contribution of the organic matrix to bone’s material properties, Bone, 2002, 31, 8–11.
- [6] DAWSON J.M., KHMELNIKER B.V., MCANDREW M.P., Analysis of the structural behavior of the pelvis during lateral impact using the finite element method, Accid. Anal. Prev., 1999, 31, 109–119.
- [7] DICKENSON R.P., HUTTON W.C., STOTT J.R.R., The mechanical properties of bone in osteoporosis, J. Bone Joint Surg., 1981, 63, 233–238.
- [8] DY CH.J., LAMONT L.E., TON Q.V., LANE J.M., Sex and Gender Considerations in Male Patients With Osteoporosis, Clin. Orthop. Relat. Res., 2011, 469, 1906–1912.
- [9] FILIPIAK J., KRAWCZYK A., MORASIEWICZ L., Distribution of radiological density in bone regenerate in relation to cyclic displacements of bone fragments, Acta Bioeng. Biomech., 2009, 11, 3, 3–9.
- [10] HEINI P.F., FRANZ T., FANKHAUSER CH., GASSER B., GANZ R., Femoroplasty-augmentation of mechanical properties in the osteoporotic proximal a biomechanical investigation of PMMA reinforcement in cadaver bones, Clin. Biomech., 2004, 19, 506–512.
- [11] HELGASON B., PERILLI E., SCHILEO E., TADDEI F. BRYNJOLFSSON S., VICECONTI M., Mathematical relationships between bone density and mechanical properties: a literature review, Clin. Biomech., 2008, 23, 135–46.
- [12] HEWITT J., GUILAK F., GLISSON R., VAIL P., Regional material properties of the human hip joint capsule ligaments, J. Orthop. Res., 2001, 19, 359–364.
- [13] HUYBRECHTS K.F., ISHAK K.J., CARO J.J., Assessment of compliance with osteoporosis treatment and its consequences in a managed care population, Bone, 2006, 38, 922–928.
- [14] LI B., ASPDEN R.M., Composition and Mechanical Properties of Cancellous Bone from the Femoral Head of Patients with Osteoporosis or Osteoarthritis, J. Bone Min. Res., 1997, 12, 641–651.
- [15] LIANG D., YE L., JIANG X.B., YANG P., ZHOU G.Q., YAO Z.S., ZHANG S.C., YANG Z.D., Biomechanical effects of cement distribution in the fractured area on osteoporotic vertebral compression fractures: a three-dimensional finite element analysis, J. Surg. Res., 2015, 195, 246–256.
- [16] MAJUMDER S., ROYCHOWDHURY A., PAL S., Three-dimensional finite element simulation of pelvic fracture during side impact with pelvis-femur-soft tissue complex, Int. J. Crashworthines, 2008, 13, 313–329.
- [17] MAZURKIEWICZ A., TOPOLIŃSKI T., Relation between structure, density and strength of the human trabecular bone, Acta Bioeng. Biomech., 2009, 11, 55–61.
- [18] PAL S., Design of Artificial Human Joints and Organs, Springer, Hardcover, ISBN: 978-1-4614-6254-5, 2014.
- [19] PITZEN T., GEISLET F., MATTHIS D., MULLER-STORZ H., BARBIER D., STEUDEL W.I., FELDGES A., A finite element model for predicting the biomechanical behavior of the human lumbar spine, Control Eng. Pract., 2002, 10, 83–90.
- [20] ROSHOLM A., HYLDSTRUP L., BAKSGAARD L., GRUNKIN M., THODBERG H.H., Estimation of Bone Mineral Density by Digital X-ray Radiogrammetry: Theoretical Background and Clinical Testing, Osteoporosis Int., 2001, 12, 961–969.
- [21] SEHMISCH S., GALAL R., KOLIOS L., TEZYAL M., DULLIN C., ZIMMER S., STUERMER K.M., STUERMER E.K., Effects of lowmagnitude, high-frequency mechanical stimulation in the rat osteopenia model, Osteoporos. Int., 2009, 20, 1999–2008.
- [22] STEWART K.J., EDMONDS-WILSON R.H., BRAND R.A., BROWN T.D., Spatial distribution of hip capsule structural and material properties, J. Biomech., 2002, 35, 1491–1498.
- [23] STROM O., BORGSTROM F., KANIS J.A., COMPSTON J., COOPER C., MCCLOSKEY E.V., JOHSSON B., Osteoporosis: burden, health care provision and opportunities in the EU, Arch. Osteoporos., 2011, 6, 59–155.
- [24] STURMER E.K., SEIDLOVA-WUTTKE D., SEHMISCH S., RACK T., WILLE J., FROSCH K.H., WUTTKE W., STURMER K.M., Standardized Bending and Breaking Test for the Normal and Osteoporotic Metaphyseal Tibias of the Rat: Effect of Estradiol, Testosterone, and Raloxifene, J. Bone Min. Res., 2006, 21, 89–96.
- [25] UDHAYAKUMAR G., SUJATHA C.M., RAMAKRISHNAN S., Comparison of two interpolation methods for empirical mode decomposition based evaluation of radiographic femur bone images, Acta Bioeng. Biomech., 2013, 15, 73–80.
- [26] VERHULP E., RIETBERGEN B., HUISKES R., Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side, Bone, 2008, 42, 30–35.
- [27] ZHANG L., LU H., ZHENG H., LI M., YIN P., PENG Y., GAO Y., ZHANG L., TANG P., Correlation between Parameters of Calcaneal Quantitative Ultrasound and Hip Structural Analysis in Osteoporotic Fracture Patients, PLoS ONE, 2015, 10, 1–14.
- [28] ZHOU Y., MIN L., LIU Y., SHI R., ZHANG W., ZHANG H., DUAN H., TU Ch., Finite element analysis of the pelvis after modular hemipelvic endoprosthesis reconstruction, Int. Orthop., 2013, 37, 653–658.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c235508a-c58e-4747-baad-92c1d9db9e64