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Abstract. Let G be a simple graph without isolated vertices with vertex set V (G) and
edge set E(G) and let k be a positive integer. A function f : E(G) −→ {−1, 1} is said to
be a signed star k-dominating function on G if

∑
e∈E(v) f(e) ≥ k for every vertex v of G,

where E(v) = {uv ∈ E(G) | u ∈ N(v)}. A set {f1, f2, . . . , fd} of signed star k-dominating
functions on G with the property that

∑d
i=1 fi(e) ≤ k for each e ∈ E(G), is called a signed

star (k, k)-dominating family (of functions) on G. The maximum number of functions in
a signed star (k, k)-dominating family on G is the signed star (k, k)-domatic number of
G, denoted by d(k,k)SS (G). In this paper we study properties of the signed star (k, k)-domatic
number d(k,k)SS (G). In particular, we present bounds on d(k,k)SS (G), and we determine the signed
(k, k)-domatic number of some regular graphs. Some of our results extend these given by
Atapour, Sheikholeslami, Ghameslou and Volkmann [Signed star domatic number of a graph,
Discrete Appl. Math. 158 (2010), 213–218] for the signed star domatic number.
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1. INTRODUCTION

Let G be a graph with vertex set V (G) and edge set E(G). We use [8] for terminology
and notation which are not defined here and consider simple graphs without isolated
vertices only. For every nonempty subset E′ of E(G), the subgraph G[E′] induced by
E′ is the graph whose vertex set consists of those vertices of G incident with at least
one edge of E′ and whose edge set is E′.

Two edges e1, e2 of G are called adjacent if they are distinct and have a com-
mon vertex. The open neighborhood NG(e) of an edge e ∈ E(G) is the set of all
edges adjacent to e. Its closed neighborhood is NG[e] = NG(e) ∪ {e}. For a function
f : E(G) −→ {−1, 1} and a subset S of E(G) we define f(S) =

∑
e∈S f(e). The
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edge-neighborhood EG(v) = E(v) of a vertex v ∈ V (G) is the set of all edges incident
with the vertex v. For each vertex v ∈ V (G), we also define f(v) =

∑
e∈EG(v) f(e).

Let k be a positive integer. A function f : E(G) −→ {−1, 1} is called a signed star
k-dominating function (SSkDF) on G, if f(v) ≥ k for every vertex v of G. The signed
star k-domination number of a graph G is

γkSS(G) = min
{ ∑

e∈E(G)

f(e) | f is a SSkDF on G
}
.

The signed star k-dominating function f on G with f(E(G)) = γkSS(G) is called a
γkSS(G)-function. As the assumption δ(G) ≥ k is clearly necessary, we will always
assume that when we discuss γkSS(G) all graphs involved satisfy δ(G) ≥ k. The signed
star k-domination number was introduced by Xu and Li in [11] and has been studied
by several authors (see for instance [4, 5]). The signed star 1-domination number is
the usual signed star domination number which has been introduced by Xu in [9] and
has been studied by several authors (see for instance [4, 6, 10]).

A set {f1, f2, . . . , fd} of signed star k-dominating functions onG with
∑d
i=1 fi(e) ≤

k for each e ∈ E(G), is called a signed star (k, k)-dominating family (of functions) on
G. The maximum number of functions in a signed star (k, k)-dominating family on G
is the signed star (k, k)-domatic number of G, denoted by d(k,k)SS (G). The signed star
(k, k)-domatic number is well-defined and

d
(k,k)
SS (G) ≥ 1 (1.1)

for all graphs G with δ(G) ≥ k, since the set consisting of any one SSkD function
forms a SS(k,k)D family on G. A d

(k,k)
SS -family of a graph G is a SS(k,k)D family

containing d(k,k)SS (D) SSkD functions. The signed star (1,1)-domatic number d(1,1)SS (G)
is the usual signed star domatic number dSS(G) which was introduced by Atapour,
Sheikholeslami, Ghameslou and Volkmann in [1].

Our purpose in this paper is to initiate the study of signed star (k, k)-domatic
numbers in graphs. We first study basic properties and bounds for the signed star
(k, k)-domatic number of a graph where some of them are analogous to those of the
signed star domatic number dSS(G) in [1]. In addition, we determine the signed star
(k, k)-domatic number of some regular graphs.

We start with a simple known observation which is important for our investiga-
tions.

Observation 1.1 ([5]). Let G be a graph of size m with δ(G) ≥ k. Then γkSS(G) =
m if and only if each edge e ∈ E(G) has an endpoint u such that deg(u) = k or
deg(u) = k + 1.

2. BASIC PROPERTIES OF THE SIGNED STAR (k, k)-DOMATIC NUMBER

In this section we study basic properties of d(k,k)SS (G).
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Proposition 2.1. If k≥1 is an integer and G is a graph of minimum degree δ(G) ≥ k,
then

d
(k,k)
SS (G) ≤ δ(G).

Moreover, if d
(k,k)
SS (G) = δ(G), then for each function of any signed star

(k, k)-dominating family {f1, f2, . . . , fd} with d = d
(k,k)
SS (G), and for all vertices v

of degree δ(G),
∑
e∈E(v) fi(e) = k and

∑d
i=1 fi(e) = k for every e ∈ E(v).

Proof. Let {f1, f2, . . . , fd} be a signed star (k, k)-dominating family on G such that
d = d

(k,k)
SS (G). If v ∈ V (G) is a vertex of minimum degree δ(G), then it follows that

d · k =
d∑

i=1

k ≤
d∑

i=1

∑

e∈E(v)

fi(e) =

=
∑

e∈E(v)

d∑

i=1

fi(e) =

≤
∑

e∈E(v)

k = k · δ(G),

and this implies the desired upper bound on the signed star (k, k)-domatic number.
If d(k,k)SS (G) = δ(G), then the two inequalities occurring in the proof become equa-

lities, which leads to the two properties given in the statement.

The special case k = 1 in Proposition 2.1 can be found in [1]. As an application
of Proposition 2.1, we will prove the following Nordhaus-Gaddum type result.

Corollary 2.2. If k ≥ 1 is an integer and G is a graph of order n such that δ(G) ≥ k
and δ(G) ≥ k, then

d
(k,k)
SS (G) + d

(k,k)
SS (G) ≤ n− 1.

If d(k,k)SS (G) + d
(k,k)
SS (G) = n− 1, then G is regular.

Proof. Since δ(G) ≥ k and δ(G) ≥ k, it follows from Proposition 2.1 that

d
(k,k)
SS (G) + d

(k,k)
SS (G) ≤ δ(G) + δ(G) =

= δ(G) + (n−∆(G)− 1) ≤
≤ n− 1,

and this is the desired Nordhaus-Gaddum inequality. If G is not regular, then
∆(G)− δ(G) ≥ 1, and the above inequality chain leads to the better bound
d
(k,k)
SS (G) + d

(k,k)
SS (G) ≤ n− 2. This completes the proof.

Theorem 2.3. If v is a vertex of a graph G such that d(v) is odd and k is even or
d(v) is even and k is odd, then

d
(k,k)
SS (G) ≤ k

k + 1
· d(v).
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Proof. Let {f1, f2, . . . , fd} be a signed star (k, k)-dominating family on G such that
d = d

(k,k)
SS (G). Assume first that d(v) is odd and k is even. The definition yields∑

e∈E(v) fi(e) ≥ k for each i ∈ {1, 2, . . . , d}. On the left-hand side of this inequality a
sum of an odd number of odd summands occurs. Therefore it is an odd number, and
as k is even, we obtain

∑
e∈E(v) fi(e) ≥ k+ 1 for each i ∈ {1, 2, . . . , d}. It follows that

k · d(v) =
∑

e∈E(v)

k ≥
∑

e∈E(v)

d∑

i=1

fi(e) =

=
d∑

i=1

∑

e∈E(v)

fi(e) ≥

≥
d∑

i=1

(k + 1) = d(k + 1),

and this leads to the desired bound. Assume next that d(v) is even and k is odd.
Note that

∑
e∈E(v) fi(e) ≥ k for each i ∈ {1, 2, . . . , d}. On the left-hand side of this

inequality a sum of an even number of odd summands occurs. Therefore it is an even
number, and as k is odd, we obtain

∑
e∈E(v) fi(e) ≥ k + 1 for each i ∈ {1, 2, . . . , d}.

Now the desired bound follows as above, and the proof is complete.

The next result is an immediate consequence of Theorem 2.3.

Corollary 2.4. If G is a graph such that δ(G) is odd and k is even or δ(G) is even
and k is odd, then

d
(k,k)
SS (G) ≤ k

k + 1
· δ(G).

The bound is sharp for cycles when k = 1.

As an application of Corollary 2.4, we will improve the Nordhaus-Gaddum bound
in Corollary 2.2 for many cases.

Theorem 2.5. Let k ≥ 1 be an integer, and let G be a graph of order n such that
δ(G) ≥ k and δ(G) ≥ k. If ∆(G)− δ(G) ≥ 1 or k is odd or k is even and δ(G) is odd
or k, δ(G) and n are even, then

d
(k,k)
SS (G) + d

(k,k)
SS (G) ≤ n− 2.

Proof. If ∆(G)−δ(G) ≥ 1, then Corollary 2.2 implies the desired bound. Thus assume
now that G is δ(G)-regular.
Case 1. Assume that k is odd. If δ(G) is even, then it follows from Proposition 2.1
and Corollary 2.4 that

d
(k,k)
SS (G) + d

(k,k)
SS (G) ≤ k

k + 1
δ(G) + δ(G) =

=
k

k + 1
δ(G) + (n− δ(G)− 1) <

< n− 1,
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and we obtain the desired bound. If δ(G) is odd, then n is even and thus δ(G) =
n− δ(G)− 1 is even. Combining Proposition 2.1 and Corollary 2.4, we find that

d
(k,k)
SS (G) + d

(k,k)
SS (G) ≤ δ(G) +

k

k + 1
δ(G) =

= (n− δ(G)− 1) +
k

k + 1
δ(G) <

< n− 1,

and this completes the proof of Case 1.

Case 2. Assume that k is even. If δ(G) is odd, then it follows from Proposition 2.1
and Corollary 2.4 that

d
(k,k)
SS (G) + d

(k,k)
SS (G) ≤ k

k + 1
δ(G) + (n− δ(G)− 1) < n− 1.

If δ(G) is even and n is even, then δ(G) = n − δ(G) − 1 is odd, and we obtain the
desired bound as above.

Theorem 2.6. If G is a graph such that k is odd and d(k,k)SS (G) is even or k is even
and d(k,k)SS (G) is odd, then

d
(k,k)
SS (G) ≤ k − 1

k
δ(G).

Proof. Let {f1, f2, . . . , fd} be a signed star (k, k)-dominating family on G such that
d = d

(k,k)
SS (G). Assume first that k is odd and d is even. If e ∈ E(G) is an arbitrary

edge, then
∑d
i=1 fi(e) ≤ k. On the left-hand side of this inequality a sum of an even

number of odd summands occurs. Therefore it is an even number, and as k is odd,
we obtain

∑d
i=1 fi(e) ≤ k − 1 for each e ∈ E(G). If v is a vertex of minimum degree,

then it follows that

d · k =

d∑

i=1

k ≤
d∑

i=1

∑

e∈E(v)

fi(e) =

=
∑

e∈E(v)

d∑

i=1

fi(e) ≤

≤
∑

e∈E(v)

(k − 1) = δ(G)(k − 1),

and this yields to the desired bound. Assume second that k is even and d is odd. If
e ∈ E(G) is an arbitrary edge, then

∑d
i=1 fi(e) ≤ k. On the left-hand side of this

inequality a sum of an odd number of odd summands occurs. Therefore it is an odd
number, and as k is even, we obtain

∑d
i=1 fi(e) ≤ k − 1 for each e ∈ E(G). Now the

desired bound follows as above, and the proof is complete.
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According to (1.1), d(k,k)SS (G) is a positive integer. If we suppose in the case k = 1

that dSS(G) = d
(1,1)
SS (G) is an even integer, then Theorem 2.6 leads to the contradic-

tion dSS(G) ≤ 0. Consequently, we obtain the next known result.

Corollary 2.7 ([1]). The signed star domatic number dSS(G) is an odd integer.

Proposition 2.8. Let k ≥ 2 be an integer, and let G be a graph with minimum degree
δ(G) ≥ k. Then d

(k,k)
SS (G) = 1 if and only if each edge e ∈ E(G) has an endpoint u

such that deg(u) = k or deg(u) = k + 1.

Proof. Assume that each edge e ∈ E(G) has an endpoint u such that deg(u) = k
or deg(u) = k + 1. It follows from Observation 1.1 that γkSS(G) = m and thus
d
(k,k)
SS (G) = 1.
Conversely, assume that d(k,k)SS (G) = 1. If G contains an edge e = uv such that

d(u) ≥ k + 2 and d(v) ≥ k + 2, then the functions f1, f2 : E(G) → {−1, 1} such
that f1(x) = 1 for each x ∈ E(G) and f2(e) = −1 and f2(x) = 1 for each edge
x ∈ E(G)\{e} are signed star k-dominating functions on G such that f1(x)+f2(x) ≤
2 ≤ k for each edge x ∈ E(G). Thus {f1, f2} is a signed star (k, k)-dominating family
on G, a contradiction to d(k,k)SS (G) = 1.

The next result is an immediate consequence of Observation 1.1 and Propo-
sition 2.8.

Corollary 2.9. Let k ≥ 2 be an integer, and let G be a graph with minimum degree
δ(G) ≥ k. Then d

(k,k)
SS (G) = 1 if and only if γkSS(G) = m.

Next we present a lower bound on the signed star (k, k)-domatic number.

Proposition 2.10. Let k ≥ 1 be an integer, and let G be a graph with minimum
degree δ(G) ≥ k. If G contains a vertex v ∈ V (G) such that all vertices of N [N [v]]

have degree at least k + 2, then d
(k,k)
SS (G) ≥ k.

Proof. Let {u1, u2, . . . , uk} ⊂ N(v). The hypothesis that all vertices of N [N [v]] have
degree at least k+2 implies that the functions fi : E(G)→ {−1, 1} such that fi(vui) =
−1 and fi(x) = 1 for each edge x ∈ E(G) \ {vui} are signed star k-dominating
functions on G for i ∈ {1, 2, . . . , k}. Since f1(x)+f2(x)+ . . .+fk(x) ≤ k for each edge
x ∈ E(G), we observe that {f1, f2, . . . , fk} is a signed star (k, k)-dominating family
on G, and Proposition 2.10 is proved.

Corollary 2.11. If G is a graph of minimum degree δ(G) ≥ k+2, then d(k,k)SS (G) ≥ k.
Theorem 2.12. Let G be a graph of size m with δ(G) ≥ k, signed star k-domination
number γkSS(G) and signed star (k, k)-domatic number d(k,k)SS (G). Then

γkSS(G) · d(k,k)SS (G) ≤ mk.

Moreover, if γkSS(G) · d(k,k)SS (G) = mk, then for each d(k,k)SS -family {f1, f2, . . . , fd} of
G, each function fi is a γkSS-function and

∑d
i=1 fi(e) = k for all e ∈ E(G).
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Proof. If {f1, f2, . . . , fd} is a signed star (k, k)-dominating family on G such that
d = d

(k,k)
SS (G), then the definitions imply

d · γkSS(G) =
d∑

i=1

γkSS(G) ≤
d∑

i=1

∑

e∈E(G)

fi(e) =

=
∑

e∈E(G)

d∑

i=1

fi(e) ≤
∑

e∈E(G)

k = mk

as desired.
If γkSS(G) · d(k,k)SS (G) = mk, then the two inequalities occurring in the proof

become equalities. Hence for the d(k,k)SS -family {f1, f2, . . . , fd} of G and for each i,∑
e∈E(G) fi(e) = γkSS(G), thus each function fi is a γkSS-function, and

∑d
i=1 fi(e) =

k for all e ∈ E(G).

The upper bound on the product γkSS(G) · d(k,k)SS (G) leads to an upper bound on
the sum of these two parameters.

Theorem 2.13. If k ≥ 1 is an integer and G is a graph of size m and minimum
degree δ(G) ≥ k, then

d
(k,k)
SS (G) + γkSS(G) ≤ m+ k.

Proof. If δ(G) = k, then it follows from Proposition 2.1 that

d
(k,k)
SS (G) + γkSS(G) ≤ δ(G) +m = m+ k.

Assume next that δ(G) = k + 1. If γkSS(G) = m, then d(k,k)SS (G) = 1 and so

d
(k,k)
SS (G) + γkSS(G) = m+ 1 ≤ m+ k.

In the case that γkSS(G) ≤ m− 1, Proposition 2.1 implies that

d
(k,k)
SS (G) + γkSS(G) ≤ δ(G) +m− 1 = m+ k.

Assume now that δ(G) ≥ k + 2. According to Theorem 2.12, we have

d
(k,k)
SS (G) + γkSS(G) ≤ d(k,k)SS (G) +

km

d
(k,k)
SS (G)

.

In view of Corollary 2.11, d(k,k)SS (G) ≥ k, and Proposition 2.1 implies that d(k,k)SS (G) ≤
n−1 ≤ m. Using these inequalities, and the fact that the function g(x) = x+(km)/x
is decreasing for k ≤ x ≤

√
km and increasing for

√
km ≤ x ≤ n, we obtain

d
(k,k)
SS (G) + γkSS(G) ≤ max

{
k +

km

k
,m+

km

m

}
= m+ k.

Since we have discussed all possible cases for the minimum degree δ(G), the proof of
Theorem 2.13 is complete.
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3. REGULAR GRAPHS

Theorem 3.1. Let k ≥ 1 be an integer, and let G be an r-regular graph with r ≥ k.
(1) If k ≤ r ≤ k + 1, then d

(k,k)
SS (G) = 1.

(2) If r = k + 2p+ 1 with p ≥ 1, then k ≤ d(k,k)SS (G) ≤ r − 3.
(3) If r = k + 2p with p ≥ 1, then d

(k,k)
SS (G) 6= r − 1, and if d(k,k)SS (G) = r, then G

contains a p-regular factor.

Proof. (1) Assume that k ≤ r ≤ k + 1. According to Observation 1.1, we have
γkSS(G) = m and thus d(k,k)SS (G) = 1.

(2) Assume that r = k + 2p + 1 with p ≥ 1. In view of Proposition 2.1 and
Corollary 2.11, we obtain k ≤ d(k,k)SS (G) ≤ r.

If we suppose that d(k,k)SS (G) = r, then Theorem 2.6 yields to the contradiction
r ≤ (k − 1)r/k.

Next, we suppose that d(k,k)SS (G) = r− 1 = k+ 2p. In that case Theorem 2.3 leads
to the contradiction r − 1 ≤ kr/(k + 1).

Now suppose that d(k,k)SS (G) = r− 2 = k+ 2p− 1, and let {f1, f2, . . . , fk+2p−1} be
a signed star (k, k)-dominating family of G. If e ∈ E(G) is an arbitrary edge, then∑k+2p−1
i=1 fi(e) ≤ k. If k is odd, then on the left-hand side of this inequality a sum of

an even number of odd summands occurs. Therefore it is an even number, and as k
is odd, it follows that

∑k+2p−1
i=1 fi(e) ≤ k− 1. If k is even, then we obtain analogously

the same bound
∑k+2p−1
i=1 fi(e) ≤ k − 1. If v ∈ V (G) is an arbitrary vertex, then∑

e∈E(v) fi(e) ≥ k for each 1 ≤ i ≤ k + 2p − 1. Therefore fi(e) = −1 for at most p
edges e ∈ E(v) and thus

∑
e∈E(v) fi(e) ≥ k+ 1 for each 1 ≤ i ≤ k+ 2p− 1. Using the

identity 2|E(G)| = |V (G)|(k + 2p+ 1), we deduce that

|V (G)|(k + 2p+ 1)(k − 1) = 2|E(G)|(k − 1) ≥ 2
∑

e∈E(G)

r−2∑

i=1

fi(e) =

=
∑

v∈V (G)

r−2∑

i=1

∑

e∈E(v)

fi(e) ≥
∑

v∈V (G)

r−2∑

i=1

(k + 1) =

= |V (G)|(k + 2p− 1)(k + 1).

It follows that (k+2p+1)(k−1) ≥ (k+2p−1)(k+1), and we obtain the contradiction
−2p ≥ 2p. Altogether, we have shown that k ≤ d(k,k)SS (G) ≤ r − 3 in that case.

(3) Assume that r = k + 2p with p ≥ 1. Proposition 2.1 and Corollary 2.11 imply
k ≤ d

(k,k)
SS (G) ≤ r. If we suppose that d(k,k)SS (G) = r − 1 = k + 2p− 1, then it follows

from Theorem 2.6 that

d
(k,k)
SS (G) = k + 2p− 1 ≤ k − 1

k
(k + 2p),

and we obtain the contradiction 2p ≤ 0. Hence d(k,k)SS (G) 6= r − 1.
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Now assume that d
(k,k)
SS (G) = r = k + 2p, and let {f1, f2, . . . , fk+2p} be a

signed star (k, k)-dominating family of G. Applying Proposition 2.1, we deduce that∑
e∈E(v) fi(e) = k for each v ∈ V (G) and each 1 ≤ i ≤ k + 2p. Then for each

1 ≤ i ≤ k+ 2p, each vertex v ∈ V (G) is adjacent to exactly p edges ei1, ei2, . . . , eip such
that fi(ei1) = fi(e

i
2) = . . . fi(e

i
p) = −1. However, this is only possible if G contains a

p-regular factor, and the proof is complete.

Theorem 3.1 (2) implies the next result immediately.

Corollary 3.2. If k ≥ 1 is an integer and G is a (k + 3)-regular graph, then
d
(k,k)
SS (G) = k.

Corollary 3.3. If k ≥ 1 is an integer and G is a (k+2p)-regular graph of odd order n
with p ≥ 1 odd, then k ≤ d(k,k)SS (G) = k + 2p− 2.

Proof. Using Theorem 3.1 (3), we see that d(k,k)SS (G) = k+2p or d(k,k)SS (G) ≤ k+2p−2.
If d(k,k)SS (G) = k + 2p, then Theorem 3.1 (3) implies that G contains a p-regular
factor. Since n and p are odd, this is impossible, and thus Theorem 3.1 (3) yields to
k ≤ d(k,k)SS (G) ≤ k + 2p− 2.

Corollary 3.3 leads to the follwing supplement to Theorem 2.5.

Corollary 3.4. Let k ≥ 2 be an even integer, and let G be a δ(G)-regular graph of
odd order n such that δ(G) ≥ k and δ(G) ≥ k. If δ(G) = k + 2p with an odd integer
p ≥ 1, then

d
(k,k)
SS (G) + d

(k,k)
SS (G) ≤ n− 2.

Proof. In view of Corollary 2.2, we see that d(k,k)SS (G) + d
(k,k)
SS (G) ≤ n − 1. Suppose

to the contrary that d(k,k)SS (G) + d
(k,k)
SS (G) = n − 1. Then Proposition 2.1 implies

that d(k,k)SS (G) = δ(G) = k + 2p. However, Corollary 3.3 leads to the contradiction
d
(k,k)
SS (G) ≤ k + 2p− 2, and the proof is complete.

Corollary 3.5. If k ≥ 1 is an integer and G a (k + 2)-regular graph of odd order n,
then d

(k,k)
SS (G) = k.

Let H be a (k + 2)-regular bipartite graph. By a well-known result of König
[3], there exists a decomposition of E(H) in perfect matchings M1,M2, . . . ,Mk+2.
Now define fi : E(H) −→ {−1, 1} by fi(e) = −1 when e ∈ Mi and fi(e) = 1
when e ∈ E(H) −Mi for 1 ≤ i ≤ k + 2. Then fi(v) =

∑
e∈E(v) fi(e) = k for each

v ∈ V (H) and each 1 ≤ i ≤ k + 2 and
∑k+2
i=1 fi(e) = k for every e ∈ E(H). Therefore

{f1, f2, . . . , fk+2} is a signed star (k, k)-dominating family on H, and consequently
d
(k,k)
SS (H) = k + 2. This family of examples demonstrates that d(k,k)SS (G) = k + 2 in

Corollary 3.5 is possible when the order of G is even.

Theorem 3.6. Let k ≥ 1 and p ≥ 2 be integers, and let G be an r-regular graph with
r = k + 2p+ 1. If p < k + 1, then d

(k,k)
SS (G) ≤ r − 4.
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Proof. According to Theorem 3.1 (2), we have d(k,k)SS (G) ≤ r − 3. We suppose to
the contrary that d(k,k)SS (G) = r − 3 = k + 2p − 2. Let {f1, f2, . . . , fk+2p−2} be a
signed star (k, k)-dominating family of G. If e ∈ E(G) is an arbitrary edge, then∑k+2p−2
i=1 fi(e) ≤ k. If v ∈ V (G) is an arbitrary vertex, then

∑
e∈E(v) fi(e) ≥ k for each

1 ≤ i ≤ k+2p−2. As in the proof of Theorem 3.1 (2), we see that
∑
e∈E(v) fi(e) ≥ k+1

for each 1 ≤ i ≤ k + 2p − 2. Using again the identity 2|E(G)| = |V (G)|(k + 2p + 1),
we deduce that

|V (G)|(k + 2p+ 1)k = 2|E(G)|k ≥ 2
∑

e∈E(G)

r−3∑

i=1

fi(e) =

=
∑

v∈V (G)

r−3∑

i=1

∑

e∈E(v)

fi(e) ≥
∑

v∈V (G)

r−3∑

i=1

(k + 1) =

= |V (G)|(k + 2p− 2)(k + 1).

It follows that (k+2p+1)k ≥ (k+2p−2)(k+1). This yields k+1 ≥ p, a contradiction
to the hypothesis p < k + 1.

Theorem 3.7. Let k ≥ 1 and p ≥ 2 be integers, and let G be an r-regular graph with
r = k + 2p+ 1. If k + 1 < 2p, then d

(k,k)
SS (G) 6= r − 4.

Proof. Suppose to the contrary that d
(k,k)
SS (G) = r − 4 = k + 2p − 3. Let

{f1, f2, . . . , fk+2p−3} be a signed star (k, k)-dominating family of G. If e ∈ E(G)

is an arbitrary edge, then
∑k+2p−3
i=1 fi(e) ≤ k. If k is oddd, then on the left-hand side

of this inequality a sum of an even number of odd summands occurs. Therefore it is
an even number, and as k is odd, it follows that

∑k+2p−3
i=1 fi(e) ≤ k − 1. If k is even,

then we obtain analogously the same bound
∑k+2p−3
i=1 fi(e) ≤ k − 1. If v ∈ V (G) is

an arbitrary vertex, then we obtain as above that
∑
e∈E(v) fi(e) ≥ k + 1 for each

1 ≤ i ≤ k + 2p− 3. Using the identity 2|E(G)| = |V (G)|(k + 2p+ 1), we deduce that

|V (G)|(k + 2p+ 1)(k − 1) = 2|E(G)|(k − 1) ≥ 2
∑

e∈E(G)

r−4∑

i=1

fi(e) =

=
∑

v∈V (G)

r−4∑

i=1

∑

e∈E(v)

fi(e) ≥
∑

v∈V (G)

r−4∑

i=1

(k + 1) =

= |V (G)|(k + 2p− 3)(k + 1).

It follows that (k + 2p+ 1)(k − 1) ≥ (k + 2p− 3)(k + 1) and hence k + 1 ≥ 2p. This
is a contradiction to the hypothesis k + 1 < 2p, and the proof is complete.

Combining Theorems 3.1, 3.6 and 3.7, we obtain the next bounds on d
(k,k)
SS (G)

immediately.

Corollary 3.8. Let k ≥ 1 and p ≥ 2 be integers, and let G be an r-regular graph with
r = k + 2p+ 1. If k + 1 < 2p < 2k + 2, then k ≤ d(k,k)SS (G) ≤ r − 5.
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The special case k = p = 2 in Corollary 3.8 leads to the following result.

Corollary 3.9. If G is a 7-regular graph, then d
(2,2)
SS (G) = 2.
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