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Abstract. Let G be a simple graph without isolated vertices with vertex set V(G) and
edge set E(G) and let k be a positive integer. A function f : E(G) — {—1,1} is said to
be a signed star k-dominating function on G if ZeEE(U) f(e) > k for every vertex v of G,
where E(v) = {uv € E(GQ) | u € N(v)}. A set {f1, f2,..., fa} of signed star k-dominating
functions on G with the property that Zle fi(e) < k for each e € E(G), is called a signed
star (k, k)-dominating family (of functions) on G. The maximum number of functions in
a signed star (k, k)-dominating family on G is the signed star (k,k)-domatic number of
G, denoted by dng’M(G). In this paper we study properties of the signed star (k, k)-domatic
number d(SkS’k) (@). In particular, we present bounds on d(sks’k) (G), and we determine the signed
(k, k)-domatic number of some regular graphs. Some of our results extend these given by
Atapour, Sheikholeslami, Ghameslou and Volkmann [Signed star domatic number of a graph,
Discrete Appl. Math. 158 (2010), 213-218] for the signed star domatic number.
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signed star domination number, regular graphs.
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1. INTRODUCTION

Let G be a graph with vertex set V(G) and edge set E(G). We use [8] for terminology
and notation which are not defined here and consider simple graphs without isolated
vertices only. For every nonempty subset E’ of E(G), the subgraph G[E'] induced by
E’ is the graph whose vertex set consists of those vertices of G incident with at least
one edge of E' and whose edge set is E’.

Two edges e1,es of G are called adjacent if they are distinct and have a com-
mon vertex. The open neighborhood Ng(e) of an edge e € E(G) is the set of all
edges adjacent to e. Its closed neighborhood is Ngle] = Ng(e) U {e}. For a function
[ E(G) — {-1,1} and a subset S of E(G) we define f(S) = > .5 f(e). The
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edge-neighborhood Ec(v) = E(v) of a vertex v € V(G) is the set of all edges incident
with the vertex v. For each vertex v € V(G), we also define f(v) =3 cp_ (. f(€)-

Let k be a positive integer. A function f : E(G) — {—1,1} is called a signed star
k-dominating function (SSKDF) on G, if f(v) > k for every vertex v of G. The signed
star k-domination number of a graph G is

Yiss(G) = min{ Z f(e) | f is a SSKDF on G}.
ecE(G)

The signed star k-dominating function f on G with f(F(G)) = ykss(G) is called a
Yiss(G)-function. As the assumption §(G) > k is clearly necessary, we will always
assume that when we discuss y,55(G) all graphs involved satisfy 6(G) > k. The signed
star k-domination number was introduced by Xu and Li in [11] and has been studied
by several authors (see for instance [4,5]). The signed star 1-domination number is
the usual signed star domination number which has been introduced by Xu in [9] and
has been studied by several authors (see for instance [4,6,10]).

A set {f1, f2,..., fa} of signed star k-dominating functions on G with Ele file) <
k for each e € E(G), is called a signed star (k, k)-dominating family (of functions) on
G. The maximum number of functions in a signed star (k, k)-dominating family on G

is the signed star (k,k)-domatic number of G, denoted by dgks’k)(G). The signed star
(k, k)-domatic number is well-defined and

d @) =1 (1.1)

for all graphs G with 6(G) > k, since the set consisting of any one SSkD function

forms a SS(k,k)D family on G. A dgks’k)—famz'ly of a graph G is a SS(k,k)D family
containing d(skék)(D) SSkD functions. The signed star (1,1)-domatic number dfglél) (@)
is the usual signed star domatic number dgg(G) which was introduced by Atapour,
Sheikholeslami, Ghameslou and Volkmann in [1].

Our purpose in this paper is to initiate the study of signed star (k, k)-domatic
numbers in graphs. We first study basic properties and bounds for the signed star
(k, k)-domatic number of a graph where some of them are analogous to those of the
signed star domatic number dgg(G) in [1]. In addition, we determine the signed star
(k, k)-domatic number of some regular graphs.

We start with a simple known observation which is important for our investiga-
tions.

Observation 1.1 ([5]). Let G be a graph of size m with §(G) > k. Then vrss(G) =
m if and only if each edge e € E(G) has an endpoint u such that deg(u) = k or
deg(u) =k +1.

2. BASIC PROPERTIES OF THE SIGNED STAR (k, k)-DOMATIC NUMBER

In this section we study basic properties of d(skék)(G).
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Proposition 2.1. Ifk>1 is an integer and G is a graph of minimum degree §(G) > k,
then .

dfs (@) < 8(G).
Moreover, if d (k, k)(G) = 0(Q), then for each function of any signed star
(k, k)-dominating family {f1, f2,..., fa} with d = d (k, k)(G), and for all vertices v
of degree 6(G), X cp(y) file) =k and Zi:l file) =k for every e € E(v).
Proof. Let {f1, fa,..., fa} be a signed star (k, k)-dominating family on G such that
d= dgks’k)(G). If v € V(G) is a vertex of minimum degree §(G), then it follows that

d d

£E=Y kY Y O

i=1 i=1 ee E(v)

d
> D file)=

e€E(v) i=1

> k=k-4(G),

e€E(v)

IN

and this implies the desired upper bound on the signed star (k, k)-domatic number.
If dg.ké.k) (G) = 6(G), then the two inequalities occurring in the proof become equa-
lities, which leads to the two properties given in the statement. O

The special case k = 1 in Proposition 2.1 can be found in [1]. As an application
of Proposition 2.1, we will prove the following Nordhaus-Gaddum type result.

Corollary 2.2. Ifk > 1 is an integer and G is a graph of order n such that 6(G) > k
and §(G) > k, then
dEP @) +dEP @) <n—1.
1f d¥:P(@) + dP (@) = n =1, then G is regular.
Proof. Since §(G) > k and §(G) > k, it follows from Proposition 2.1 that

k.k k.k) (7 =
dgg” (G) +dgg” (@) < 6(G) +4(G) =
=6(G)+(n-AG)-1) <
<n-—1,
and this is the desired Nordhaus-Gaddum inequality. If G is not regular, then
A(G) —6(G) > 1, and the above inequality chain leads to the better bound
dgks’k)(G) + dgks’k)(é) < n — 2. This completes the proof. O

Theorem 2.3. If v is a vertex of a graph G such that d(v) is odd and k is even or
d(v) is even and k is odd, then
k

d557 (@) < o - dw).



612 S.M. Sheikholeslami and L. Volkmann

Proof. Let {f1, fa,..., fa} be a signed star (k, k)-dominating family on G such that
d = dgkék)(G). Assume first that d(v) is odd and k is even. The definition yields
> eer(v) file) = k for each i € {1,2,...,d}. On the left-hand side of this inequality a
sum of an odd number of odd summands occurs. Therefore it is an odd number, and
as k is even, we obtain }_ ¢ p(,) fi(e) > k+1for each i € {1,2,...,d}. It follows that

d
krdw)= Y k> 3 Y file) =

ecE(v) ecE(v) i=1
d
=2 > filoz
=1 e€c E(v)

and this leads to the desired bound. Assume next that d(v) is even and k is odd.
Note that Y . p,) fi(e) = k for each i € {1,2,...,d}. On the left-hand side of this
inequality a sum of an even number of odd summands occurs. Therefore it is an even
number, and as k is odd, we obtain 3 ., fi(e) > k + 1 for each i € {1,2,...,d}.
Now the desired bound follows as above, and the proof is complete. O

The next result is an immediate consequence of Theorem 2.3.

Corollary 2.4. If G is a graph such that 6(G) is odd and k is even or §(G) is even
and k is odd, then
k
dER @y < 2.
ss (G) < [
The bound is sharp for cycles when k = 1.

5(G).

As an application of Corollary 2.4, we will improve the Nordhaus-Gaddum bound
in Corollary 2.2 for many cases.

Theorem 2.5. Let k > 1 be an integer, and let G be a graph of order n such that
0(G) >k and 6(G) > k. If A(G) — 6(G) > 1 or k is odd or k is even and 6(G) is odd
or k, 6(G) and n are even, then

(@) +dSP (@) < n—2.

Proof. If A(G)—46(G) > 1, then Corollary 2.2 implies the desired bound. Thus assume
now that G is §(G)-regular.

Case 1. Assume that k is odd. If §(G) is even, then it follows from Proposition 2.1
and Corollary 2.4 that

A(G) + a0 (@) < 6(6) +5(0) =
k
= 9@ + (n=3(G) ~1) <

<n-—1,
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and we obtain the desired bound. If §(G) is odd, then n is even and thus 6(G) =
n — 6(G) — 1 is even. Combining Proposition 2.1 and Corollary 2.4, we find that

k
E+1
k

= (n—3(@) 1) + 570(@) <

d5H(@) + dBP (@) < 6(Q) + ——68(G) =

<n-—1,

and this completes the proof of Case 1.

Case 2. Assume that k is even. If §(G) is odd, then it follows from Proposition 2.1
and Corollary 2.4 that

dEP (@) +d5P (@) < S 5(@) + (n—6(G) — 1) <n— 1.

k+1

+ | =

If 5(G) is even and n is even, then 6(G) = n — §(G) — 1 is odd, and we obtain the
desired bound as above. O

Theorem 2.6. If G is a graph such that k is odd and dgcék)(G) is even or k is even
and dgks’k)(G) is odd, then
k.k
dgs" (G) < = —=4(a).
Proof. Let {f1, fa,..., fa} be a signed star (k, k)-dominating family on G such that
d= dfgks’k)(G). Assume first that k is odd and d is even. If e € E(G) is an arbitrary

edge, then Zgzl fi(e) < k. On the left-hand side of this inequality a sum of an even
number of odd summands occurs. Therefore it is an even number, and as k is odd,
we obtain Z?:l file) <k —1 for each e € E(G). If v is a vertex of minimum degree,
then it follows that

d
E=Y k<Y Y file) =
i=1 i=1 e€ E(v)
d
> file
e€E(v) i=1

< Z )(k_l)a

m

and this yields to the desired bound. Assume second that k is even and d is odd. If
e € E(Q) is an arbitrary edge, then Zle fi(e) < k. On the left-hand side of this
inequality a sum of an odd number of odd summands occurs. Therefore it is an odd
number, and as k is even, we obtain Zle fi(e) <k —1 for each e € E(G). Now the
desired bound follows as above, and the proof is complete. O



614 S.M. Sheikholeslami and L. Volkmann

According to (1.1), dgkék)(G) is a positive integer. If we suppose in the case k = 1

that dgs(G) = dglél)(G) is an even integer, then Theorem 2.6 leads to the contradic-
tion dgs(G) < 0. Consequently, we obtain the next known result.

Corollary 2.7 ([1]). The signed star domatic number dss(G) is an odd integer.

Proposition 2.8. Let k > 2 be an integer, and let G be a graph with minimum degree
3(G) > k. Then d(;ék)(G) =1 if and only if each edge e € E(G) has an endpoint u
such that deg(u) = k or deg(u) = k + 1.

Proof. Assume that each edge e € E(G) has an endpoint u such that deg(u) = k
or deg(u) = k + 1. It follows from Observation 1.1 that v,ss(G) = m and thus

dgst (@) =1.

Conversely, assume that dgkék)(G) = 1. If G contains an edge e = wv such that
d(u) > k+ 2 and d(v) > k + 2, then the functions fi, fo : F(G) — {—1,1} such
that fi(x) = 1 for each z € E(G) and fa(e) = —1 and fa(x) = 1 for each edge
x € E(G)\ {e} are signed star k-dominating functions on G such that fi(z)+ fo(z) <
2 < k for each edge « € E(G). Thus {f1, f2} is a signed star (k, k)-dominating family
on G, a contradiction to d(SkS’k)(G) =1. O

The next result is an immediate consequence of Observation 1.1 and Propo-
sition 2.8.

Corollary 2.9. Let k > 2 be an integer, and let G be a graph with minimum degree
5(G) > k. Then d¥:P(G) =1 if and only if vess(G) = m.

Next we present a lower bound on the signed star (k, k)-domatic number.
Proposition 2.10. Let k > 1 be an integer, and let G be a graph with minimum
degree §(G) > k. If G contains a vertex v € V(G) such that all vertices of N[N[v]]
have degree at least k + 2, then dgks’k)(G) > k.

Proof. Let {u1,ua,...,ur} C N(v). The hypothesis that all vertices of N[N[v]] have
degree at least k+2 implies that the functions f; : E(G) — {—1,1} such that f;(vu;) =
—1 and f;(x) = 1 for each edge z € E(G) \ {vu;} are signed star k-dominating
functions on G for i € {1,2,...,k}. Since f1(z)+ fa(x)+. ..+ fr(z) < k for each edge
x € E(G), we observe that {f1, fa,..., fr} is a signed star (k, k)-dominating family
on G, and Proposition 2.10 is proved. O

Corollary 2.11. If G is a graph of minimum degree 6(G) > k+2, then dgkék)(G) > k.
Theorem 2.12. Let G be a graph of size m with 6(G) > k, signed star k-domination
number vrss(G) and signed star (k, k)-domatic number dgkék)(G). Then

s (@) - dgg™ (@) < mh.

Moreover, if ykss(G) - dgig’k)(G) = mk, then for each d(skgk)—family {f1, fas---, fa} of
G, each function f; is a yrss-function and Z?ﬂ file) =k for all e € E(G).
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Proof. Tt {f1, fa,..., fa} is a signed star (k,k)-dominating family on G such that
d= dgkék)(G), then the definitions imply

d d
d-mss(G) =Y wss(@) <D D file) =
i=1

=1 ecE(QG)
d
= Z Zfi(e)g Z k=mk
e€E(G) i=1 e€E(G)

as desired.

If vkss(G) - dgcs’k)(G) = mk, then the two inequalities occurring in the proof
become equalities. Hence for the d(SkS’k)—family {f1, f2y..., fa} of G and for each 1,
ZeeE(G) fi(e) = ykss(G), thus each function f; is a ygs-function, and Ele file) =
k for all e € E(G). O

The upper bound on the product yxss(G) - dgkék)(G) leads to an upper bound on
the sum of these two parameters.

Theorem 2.13. If k > 1 is an integer and G is a graph of size m and minimum
degree 6(G) > k, then
4437 (G) +mss(G) <m+ k.

Proof. If §(G) = k, then it follows from Proposition 2.1 that
457 (G) + rss(G) < 6(G) +m = m+ k.
Assume next that §(G) = k + 1. If y,55(G) = m, then d(Sk-ék)(G) —1 and so
A3 (G) +pss(@) =m+1<m+k.
In the case that vx55(G) < m — 1, Proposition 2.1 implies that
dg*kék)(G) +ss(G) <6(G)+m—1=m+ k.

Assume now that 6(G) > k + 2. According to Theorem 2.12, we have

km

A5 (G) + wss(G) < df(G) + g —
dgs” (G)

In view of Corollary 2.11, dgkék)(G) > k, and Proposition 2.1 implies that dgkék)(G) <

n—1 < m. Using these inequalities, and the fact that the function g(x) = x + (km)/x
is decreasing for k < x < v/km and increasing for vkm < x < n, we obtain

kmo ok
A0+ s(©) < max {i+ S 20—

Since we have discussed all possible cases for the minimum degree 6(G), the proof of
Theorem 2.13 is complete. O



616 S.M. Sheikholeslami and L. Volkmann

3. REGULAR GRAPHS

Theorem 3.1. Let k > 1 be an integer, and let G be an r-reqular graph with r > k.

(1) Ifk<r <k+1, then d53¥(G) = 1.
2) Ifr=k+2p+1 withp>1, thenk<d(kk)(G) <r-3.
(3) If r = k4 2p with p > 1, then d(’”C (G) #r—1, and if dgkék)(G) =r, then G

contains a p-reqular factor
Proof. (1) Assume that k¥ < r < k 4 1. According to Observation 1.1, we have
Ykss(G) = m and thus d93¥ (@) = 1.

(2) Assume that » = k + 2p + 1 with p > 1. In view of Proposition 2.1 and
Corollary 2.11, we obtain k < dg’g’k)(G) <r.

If we suppose that d(k k)(G) = r, then Theorem 2.6 yields to the contradiction
r<(k—1r/k.

Next, we suppose that d(lc k)(G) =r —1=k+2p. In that case Theorem 2.3 leads
to the contradiction r — 1 < kr/(k +1).

Now suppose that d(k *) (G)=r—2=Fk+2p—1,and let {f1, fa,..., fx4op—1} be
a signed star (k, k)- domlnatmg family of G. If e € E(G) is an arbitrary edge, then

Zerlzp 7 (e) < k. If k is odd, then on the left-hand side of this inequality a sum of

an even number of odd summands occurs. Therefore it is an even number, and as k
is odd, it follows that Ek+2p ! fi(e) < k—1.1If k is even, then we obtain analogously
the same bound Zk+2p Yfie) < k—1.If v € V(G) is an arbitrary vertex, then
> ecr() file) = k for each 1 < i < k + 2p — 1. Therefore fi(e) = —1 for at most p
edges e € E(v) and thus 3 ., fi(e) = k+1 for each 1 < i < k+2p— 1. Using the
identity 2|E(G)| = |[V(G)|(k + 2p + 1), we deduce that

r—2
V(OIk+2p+1)(k=1) =2]E@G)|(k=1) 22 > > file)=

c€B(Q) i=1
r—2

- Y Y Y f0z Y Sen-
veV(G) i=1 e€E(v) veEV(G) i=1

=|V(G)|(k+2p—1)(k+1).

It follows that (k+2p+1)(k—1) > (k+2p—1)(k+1), and we obtain the contradiction

—2p > 2p. Altogether, we have shown that k < dgks’k)(G) < r — 3 in that case.
(3) Assume that r = k + 2p with p > 1. Proposition 2.1 and Corollary 2.11 imply

k< d(Skék)(G) < r. If we suppose that d(k k)(G) =7r—1=k+2p—1, then it follows
from Theorem 2.6 that
k—1
AP =k+2p—-1< o (k+2p),

and we obtain the contradiction 2p < 0. Hence d(SkS’k)(G) #r—1
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Now assume that d(k k)(G) =r = k+ 2p, and let {f1, f2,..., fut2p; be a
signed star (k, k)- domlnatlng family of G. Applying Proposition 2.1, we deduce that
> eer() file) = k for each v € V(G) and each 1 < i < k + 2p. Then for each

1 <i < k+2p, each vertex v € V(G) is adjacent to exactly p edges e}, e}, ..., e; such
that fi(e}) = fi(eh) = ... fi(el,) = —1. However, this is only possible if G contains a
p-regular factor, and the proof is complete. O

Theorem 3.1 (2) implies the next result immediately.

Corollary 3.2. If k > 1 is an integer and G is a (k + 3)-reqular graph, then
(k,k) _
dgs (G) = k.

Corollary 3.3. Ifk > 1 is an integer and G is a (k+2p)-regular graph of odd order n
with p > 1 odd, then k < d4(G) =k +2p— 2.

Proof. Using Theorem 3.1 (3), we see that d(k k)(G) =k+2por d(k k)(G) < k+2p-2.

If d(sks’k) (G) = k + 2p, then Theorem 3.1 (3) implies that G contains a p-regular
factor. Since n and p are odd, this is impossible, and thus Theorem 3.1 (3) yields to

k<di(@) <k+2p—2. O
Corollary 3.3 leads to the follwing supplement to Theorem 2.5.

Corollary 3.4. Let k > 2 be an even integer, and let G be a §(G)-regular graph of
odd order n such that 6(G) > k and §(G) > k. If 6(G) = k + 2p with an odd integer
p > 1, then

dEP @) +dED @) <n-2.

Proof. In view of Corollary 2.2, we see that d(sk's’k)(G) + dgk'ék) (G) < n — 1. Suppose
to the contrary that d(k k)(G) + d(k k)(G) = n — 1. Then Proposition 2.1 implies
that d(skslc (G) = §(G) = k + 2p. However, Corollary 3.3 leads to the contradiction
d(SkS’k)(G) < k + 2p — 2, and the proof is complete. O

Corollary 3.5. If k > 1 is an integer and G a (k + 2)-regular graph of odd order n,
then d3d?(G) = k.

Let H be a (k 4 2)-regular bipartite graph. By a well-known result of Konig
[3], there exists a decomposition of E(H) in perfect matchings My, Ms, ..., My a.
Now define f; : E(H) — {-1,1} by fi(e) = —1 when e € M, and f;(e) = 1
when e € E(H) — M; for 1 < i < k+ 2. Then fi(v) = > cp(, fi(e) = k for each
veV(H)and each 1 <i < k+2and Zk+2 i(e) = k for every e € E(H). Therefore
{f1, f2y.-, fet2} is a signed star (k, k)-dominating family on H, and consequently
d(sks’k)(H) = k + 2. This family of examples demonstrates that d(k k)(G) =k+2in
Corollary 3.5 is possible when the order of G is even.

Theorem 3.6. Let k > 1 and p > 2 be integers, and let G be an r-reqular graph with
r=k+2p+1. Ifp<k+1, then d(G) < r — 4.
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Proof. According to Theorem 3.1 (2), we have cl(]c k)(G) < r — 3. We suppose to
the contrary that d (k, k)(G) =r—3=%k+2p—2 Let {f1, fa,..., fotop—2} be a
signed star (k, k)- dommating family of G. If e € E(G) is an arbitrary edge, then
Zerlzp % fi(e) < k.If v € V(G) is an arbitrary vertex, then > ccr(v) file) = k for each
1 <4 < k+2p—2. As in the proof of Theorem 3.1 (2), we see that 3 ¢ () fi(e) > k+1
for each 1 < i < k + 2p — 2. Using again the identity 2|FE(G)| = |V(G)|(k + 2p + 1),
we deduce that

[V(G)|(k+2p+ 1)k =2|E(G)|k > 2 Z Zfz -

e€E(G) i=1
S Y Y Y f0s Y -
veV(G) =1 eeE(v) veV(G =1

=|V(@)|(k+2p—2)(k+1).

It follows that (k+2p+1)k > (k+2p—2)(k+1). This yields k+1 > p, a contradiction
to the hypothesis p < k + 1. O

Theorem 3.7. Let k > 1 and p > 2 be integers, and let G be an r-regular graph with
r=k+2p+1. Ifk+1<2p, then de:"(G) #r —4

Proof. Suppose to the contrary that dgcs’k)(G) =r—4 = k+ 2p — 3. Let
{f1, f2,- -, fr+2p—3} be a signed star (k,k)-dominating family of G. If e € E(G)
is an arbitrary edge, then Zka 3 fi(e) < k. If k is oddd, then on the left-hand side

of this inequality a sum of an even number of odd summands occurs. Therefore it is
an even number, and as k is odd, it follows that Zk+2p ®fi(e) <k —1.1If k is even,

then we obtain analogously the same bound Zk+2p fie) <k—1.Ifv e V(Q) is
an arbitrary vertex, then we obtain as above that }_ .y, file) = k + 1 for each
1 <4 < k+2p— 3. Using the identity 2|E(G)| = |[V(G)|(k + 2p + 1), we deduce that

r—4
V(OIk+20+1)(k=1) =2lE@)|(k=1) 22 Y > file)=

e€E(G) i=1
- Y Y Y a0z Y Seen-
VEV(@) i=1 e€E(v) evie) o1

=|V(@)|(k+2p—3)(k+1).

It follows that (k+2p+ 1)(k—1) > (k4 2p — 3)(k + 1) and hence k + 1 > 2p. This
is a contradiction to the hypothesis k + 1 < 2p, and the proof is complete. O

Combining Theorems 3.1, 3.6 and 3.7, we obtain the next bounds on dgkék) (G)
immediately.

Corollary 3.8. Let k > 1 and p > 2 be integers, and let G be an r-reqular graph with
r=k+2p+1. Ifk+1<2p<2k+2, then k <d%? (@) <r—5.



Signed star (k, k)-domatic number of a graph 619

The special case k = p = 2 in Corollary 3.8 leads to the following result.

Corollary 3.9. If G is a T-regular graph, then dgéz)(G) =2.
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