PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface-charging and particles aggregation behavior of ascharite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Surface charging and particles aggregation ascharite are investigated through Zeta potential measurement, XPS analysis, SEM analysis and dissolution experiments. The results show that more Mg2+ are removed from ascharite surface after dissolution, which confirms that incongruent dissolution of ions in the case of certain ionic substances like rmagnesium ions, hydroxyl groups and borate ions can lead to a net charge on surface. Isomorphous substitution of Fe3+ for Mg2+ is also regarded as one factor that causes surface charging behavior, which is in consistent with the experimental data. The dissolution process is analyzed to show more details about the dissolution reactions. The disparity in the bonding energy of B–O and Mg–OH surface groups and the difference in free energy of hydration of surface groups are considered to be the basic reason that lead to incongruent dissolution. Eventually, the effect of surface potential on particles aggregation is analyzed by DLVO theory, indicating that dissolution of ascharite has a detrimental effect on particles dispersion.
Rocznik
Strony
991--1001
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wz.
Twórcy
autor
  • School of Earth Science and Resources, Chang’an University, Xi’an 710054, China
autor
  • College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • School of Earth Science and Resources, Chang’an University, Xi’an 710054, China
Bibliografia
  • BREMMELL, K. E., FORNASIERO D., RALSTON J., 2005. Pentlandite-lizardite interactions and implications for their separation by flotation. Colloids and Surfaces A-physicochemical and Engineering Aspects. 252(2/3), 207-212.
  • CRUNDWELL, F. K., 2016. The mechanism of dissolution of minerals in acidic and alkaline solutions: Part V surface charge and zeta potential. Hydrometallurgy. 161,174-184.
  • DULTZ, S., STEINKE, H., MIKUTTA, R., WOCHE, S. K., GUGGENBERGER, G., 2018. Impact of organic matter types on surface charge and aggregation of goethite. Colloids and Surfaces A. 554, 156-168.
  • FENG, B., FENG, Q., LU, Y., 2012. A novel method to limit the detrimental effect of serpentine on the flotation of pentlandite. International Journal of Mineral Processing. 114, 11-13.
  • FROST, R. L., SCHOLZ, R., LOPEZ, A., BELOTTI, F. M., 2015. The molecular structure of the borate mineral szaibelyite MgBO2(OH)–A vibrational spectroscopic study. Journal of Molecular structure. 1089, 20-24.
  • FURRER, G., STUMM, W., 1988. The coordination chemistry of weathering: I. Dissolution kinetics of δ-Al2O3 and BeO. Geochimica et Cosmochimica Acta. 50, 1847–1860.
  • FU, X., ZHAO, J., CHEN, S., LIU, Z., GUO, T., CHU, M., 2015. Comprehensive Utilization of Ludwigite Ore Based on Metallizing Reduction and Magnetic Separation. Journal of iron and steel research international. 22(8), 672-680.
  • GALLIOS, G. P., DELIYANNI, E. A., PELEKA, E. N., MATIS, K. A., 2007. Flotation of chromite and serpentine. Separation and Purification Technology. 55, 232-237.
  • GAO, R., LIU, Q., WANG, J., ZhANG, X., YANG, W., LIU, J., LIU, L., 2014. Fabrication of fibrous szaibelyite with hierarchical structure superhydrophobic coating on AZ31 magnesium alloy for corrosion protection. Chemical Engineering Journal, 241, 352-359.
  • GAO, Z., LI, C., HU, Y., 2017. Anisotopic surface properties of calcite: A consideration of surface broken bonds. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 520, 53-61.
  • GAO, Z., HU, Y., SUN, W., DRELICH J. W., 2016. Surface-Charge Anisotropy of Scheelite Crystals. Langmuir. 32(25), 6282-6288.
  • GAUDIN, A. M., FUERSTENAU, D. W., MIAW, H. L., 1960. Slime coatings in galena flotation. Trans. Can. Inst. Min. Metal. 63, 668–671.
  • GRICE, J. D., 2008. Szaibelyite: crystal structure analysis and hydrogen bonding. The Canadian Mineralogist. 46, 671-677.
  • GUPTA, V., HAMPTON, M. A., STOKES, J. R., NGUYEN, A. V., MILLER, J. D., 2011. Particle interactions in kaolinite suspensions and corresponding aggregate structures. Journal of Colloid and Interface Science. 359, 85-103.
  • HARTMANN, R., KINNUNEN, P., ILLIKAINEN, M., 2018. Cellulose-mineral interactions based on the DLVO theory and their correlation with flotability. Minerals Engineering. 122, 44-52.
  • KOZIN, P. A., BOILY, J. F., 2014. Mineral surface charge development in mixed electrolyte solutions. Journal of Colloid and Interface Science. 418, 246-253.
  • KUSUMA, A. M, LIU, Q., ZENG, H., 2014. Understanding interaction mechanisms between pentlandite and gangue minerals by zeta potential and surface force measurements. Minerals Engineering. 69,16-23.
  • LIANG, B., LI, G., RAO, M., PENG, Z., ZHANG, Y., JIANG, T., 2017. Water leaching of boron from soda-ash-activated ludwigite ore. Hydrometallurgy. 167, 101-106.
  • LIU, C., ZHANG, W., SONG, S., LI, H., 2019. Effect of lizardite on pentlandite flotation at different pH: Implications for the role of particle-particle interaction. Minerals Engineering. 132, 8-13.
  • LIU, W., LIU, W., WANG, X., WEI, D., WANG, B., 2016. Utilization of novel surfactant N-dodecyl-isopropanolamine as collector for efficient separation of quartz from hematite. Separation and Purification Technology. 162,188-194.
  • LI, Y., HAN, Y., ZHU, Y., 2007. Study on the Characteristic of Camsellite Flotation. Journal of Northeastern University (natural Science). 28(7), 1041-1045.
  • LI, Z., HAN, Y., GAO, P., YING, P., 2016. Research on Processing Mineralogical Characterization of the Paigeite Ore. Journal of Northeastern University (Natural Science). 37(2), 258-262.
  • LI, Z., HAN, Y., LI, Y., GAO, P., 2017. Interaction between mineral particles during ascharite flotation process and direct force measurement using AFM. Physicochemical Problems of Mineral Processing. 53(2),1161-1174.
  • LI, Z., HAN, Y., LI, Y., GAO, P., 2017. Effect of serpentine and sodium hexametaphosphate on ascharite flotation. Transactions of Nonferrous Metals Society of China. 27,1841-1848.
  • LU, J. YUAN, Z., LIU, J., LI, L., ZHU, S., 2015. Effects of magnetite on magnetic coating behavior in pentlandite and serpentine system. Minerals Engineering. 72,115-120.
  • LU, Y., ZHANG, M., FENG, Q., LONG, T., OU, L., ZHANG, G., 2011. Effect of sodium hexametaphosphate on separation of serpentineform pyrite. Transactions of Nonferrous Metals Society of China. 21,208-213.
  • MATOS, M., TERRA, J., ELLIS, D. E., PIMENTEL, A.S., 2015. First principles calculation of magnetic order in a low-temperature phase of the iron ludwigite. Journal of Magnetism and Magnetic Materials. 374,148-152.
  • OELKERS, E. H., SCHOTT, J., DEVIDAL, J. L., 1994. The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution rates. Geochimica et Cosmochimica Acta. 58, 2011-2024
  • PHILIPP, A. K., BOILY, J. F., 2014. Mineral surface charge development in mixed electrolyte solutions. Journal of Colloid and Interface Science. 418, 246-253.
  • SCHULZE, R. K., HILL, M. A., FIELD, R. D., RAPIN, P. A., HANRAHAN, R. J., BYLER, D. D., 2004. Characterization of carbonated serpentine using XPS and TEM, Energy Conversion and Management. 45(20), 3169-3179.
  • SHAW, D. J., 1969. Electrophoresis. New York: Academic Press, pp.151-156.
  • SHCHUKAREV, A., SJOBERG, S., 2005. XPS with fast-frozen samples: A renewed approach to study the real mineral/solution interface. Surface Science. 584(1), 106-112.
  • SINHA, P., SZILAGYI, I., RUIZ-CABELLO, F. J. M., MARONI, P., BORKOVEC, M., 2013. Attractive forces between charged colloidal particles induced by multivalent ions revealed by confronting aggregation and direct force measurements. Journal of Physical Chemistry Letters. 4, 648-652.
  • VERMILYEA, D.A., 1966. The dissolution of ionic compounds in aqueous media. Journal of the Electrochemical Society. 113, 1067-1070.
  • WANG C., WANG H., GU G., FU J., LIN Q., LIU Y., 2015, Interfacial interactions between plastic particles in plastics flotation, Waste Management, 46,56-61.
  • WEI, R., PENG, Y., SEAMAN, D., 2013. The interaction of lignosulfonate dispersants and grinding media in copper–gold flotation from a high clay ore. Mineral Engineering. 50-51, 93-98.
  • YIN, X., GUPTA, V., DU, H., WANG, X., Miller, J. D., 2012. Surface charge and wetting characteristics of layered silicate minerals. Advances in Colloid and Interface Science. 179, 43-50.
  • YU, Y., MA, L., CAO, M., LIU, Q., 2017. Slime coatings in froth floatation: A review. Minerals Engineering. 114, 26-36.
  • YU, Y., MA, L., XU, H., SUN, X., ZHANG, Z., YE, G., 2018. DLVO theoretical analyses between montmorillonite and fine coal under different pH and divalent cations. Power Technology. 330, 147-151.
  • ZHAO, R., HAN, Y., YANG, G., LI, Y., 2015. Mechanism of Adsorption and Aggregation of Fine Siderite, Quartz and Hematite. Journal of Northeastern University (Natural Science). 36(4), 596-600.
  • ZHOU, X., FENG, B., 2015. The effect of polyether on the separation of pentlandite and serpentine. Journal of Materials Research and Technology. 4(4), 429-433.
  • ZHU, Y., LUO, B., SUN, C., LI, Y., HAN, Y., 2015. Influence of bromine modification on collecting property of lauric acid. Mineral Engineering. 79, 24-30.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c22ed374-6a5a-4d21-8a18-2ea0d6a47aad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.